Skip to main content
Log in

Noether theorem for action-dependent Lagrangian functions: conservation laws for non-conservative systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In the present work, we formulate a generalization of the Noether Theorem for action-dependent Lagrangian functions. The Noether’s theorem is one of the most important theorems for physics. It is well known that all conservation laws, e.g., conservation of energy and momentum, are directly related to the invariance of the action under a family of transformations. However, the classical Noether theorem cannot be applied to study non-conservative systems because it is not possible to formulate physically meaningful Lagrangian functions for this kind of systems in the classical calculus of variation. On the other hand, recently it was shown that an Action Principle with action-dependent Lagrangian functions provides physically meaningful Lagrangian functions for a huge variety of non-conservative systems (classical and quantum). Consequently, the generalized Noether Theorem we present enables us to investigate conservation laws of non-conservative systems. In order to illustrate the potential of application, we consider three examples of dissipative systems and we analyze the conservation laws related to spacetime transformations and internal symmetries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bauer, P.S.: Dissipative dynamical systems I. Proc. Natl. Acad. Sci 17, 311 (1931). https://doi.org/10.1073/pnas.17.5.311

    Article  MATH  Google Scholar 

  2. Stevens, K.W.H.: The wave mechanical damped harmonic oscillator. Proc. Phys. Soc. 72, 1027 (1958). https://doi.org/10.1088/0370-1328/72/6/311

    Article  MathSciNet  MATH  Google Scholar 

  3. Havas, P.: The range of application of the Lagrange formalism—I. Nuovo Cimento Suppl. 5, 363 (1957). https://doi.org/10.1007/BF02743927

    Article  MathSciNet  MATH  Google Scholar 

  4. Negro, F., Tartaglia, A.: The quantization of quadratic friction. Phys. Lett. A 77, 1 (1980). https://doi.org/10.1016/0375-9601(80)90614-3

    Article  Google Scholar 

  5. Negro, F., Tartaglia, A.: Quantization of motion in a velocity-dependent field: the \(v^2\) case. Phys. Rev. A 23, 1591 (1981). https://doi.org/10.1103/PhysRevA.23.1591

    Article  MathSciNet  Google Scholar 

  6. Brinati, J.R., Mizrahi, S.S.: Quantum friction in the c-number picture: the damped harmonic oscillator. J. Math. Phys. 21, 2154 (1980). https://doi.org/10.1063/1.524676

    Article  MathSciNet  Google Scholar 

  7. Tartaglia, A.: Non-conservative forces, Lagrangians and quantisation. Eur. J. Phys. 4, 231 (1983). https://doi.org/10.1088/0143-0807/4/4/007

    Article  Google Scholar 

  8. Bateman, H.: On dissipative systems and related variational principles. Phys. Rev. 38, 815 (1931). https://doi.org/10.1103/PhysRev.38.815

    Article  MATH  Google Scholar 

  9. Morse, P.M., Feshbach, H.: Methods of Theoretical Physics. McGraw-Hill, New York (1953)

    MATH  Google Scholar 

  10. Feshbach, H., Tikochinsky, Y.: Quantization of the damped harmonic oscillator. Trans. N. Y. Acad. Sci. 38, 44 (1977). https://doi.org/10.1111/j.2164-0947.1977.tb02946.x

    Article  Google Scholar 

  11. Celeghini, E., Rasetti, M., Tarlini, M., Vitiello, G.: SU(1,1) squeezed states as damped oscillators. Mod. Phys. Lett. B 3, 1213 (1989). https://doi.org/10.1142/S0217984989001850

    Article  MathSciNet  Google Scholar 

  12. Celeghini, E., Rasetti, H., Vitiello, G.: Quantum dissipation. Ann. Phys. (N.Y.) 215, 156 (1992). https://doi.org/10.1016/0003-4916(92)90302-3

    Article  MathSciNet  Google Scholar 

  13. Vujanovic, B.D., Jones, S.E.: Variational Methods in Nonconservative Phenomena. Academic Press, San Diego (1989)

    MATH  Google Scholar 

  14. Riewe, F.: Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E 53, 1890 (1996). https://doi.org/10.1103/PhysRevE.53.1890

    Article  MathSciNet  Google Scholar 

  15. Lazo, M.J., Krumreich, C.E.: The action principle for dissipative systems. J. Math. Phys. 55, 122902 (2014). https://doi.org/10.1063/1.4903991

    Article  MathSciNet  MATH  Google Scholar 

  16. Lazo, M.J., Paiva, J., Amaral, J.T.S., Frederico, G.S.F.: Action principle for action-dependent Lagrangians toward nonconservative gravity: accelerating universe without dark energy. Phys. Rev. D 95, 101501(R) (2017). https://doi.org/10.1103/PhysRevD.95.101501

    Article  Google Scholar 

  17. Lazo, M.J., Paiva, J., Amaral, J.T.S., Frederico, G.S.F.: An action principle for action-dependent Lagrangians: toward an action principle to non-conservative systems. J. Math. Phys. 59, 032902 (2018). https://doi.org/10.1063/1.5019936

    Article  MathSciNet  MATH  Google Scholar 

  18. Herglotz, G.: Berührungstransformationen. Lectures at the University of Göttingen, Göttingen (1930)

    Google Scholar 

  19. Guenther, R.B., Guenther, C.M., Gottsch, J.A.: The Herglotz Lectures on Contact Transformations and Hamiltonian Systems. Lecture Notes in Nonlinear Analysis, vol. 1. Juliusz Schauder Center for Nonlinear Studies, Nicholas Copernicus University, Torún (1996)

    MATH  Google Scholar 

  20. Georgieva, B., Guenther, R., Bodurov, T.: Generalized variational principle of Herglotz for several independent variables. First Noether-type theorem. J. Math. Phys. 44, 3911 (2003). https://doi.org/10.1063/1.1597419

    Article  MathSciNet  MATH  Google Scholar 

  21. Georgieva, B., Guenther, R.: First Noether-type theorem for the generalized variational principle of Herglotz. Topol. Methods Nonlinear Anal. 20(1), 261–273 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Santos, S.P.S., Martins, N., Torres, D.F.M.: Variational problems of Herglotz type with time delay: DuBois–Reymond condition and Noether’s first theorem. Discrete Contin. Dyn. Syst. A 35(9), 4593 (2015). https://doi.org/10.3934/dcds.2015.35.4593

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhang, Y.: Variational problem of Herglotz type for Birkhoff system and its Noether’s theorems. Acta Mech. 228(4), 1–12 (2017). https://doi.org/10.1007/s00707-016-1758-3

    MathSciNet  Google Scholar 

  24. Zhang, Y.: Noether’s theorem for a time-delayed Birkhoffian system of Herglotz type. Int. J. Nonlinear Mech. 101, 36–43 (2018). https://doi.org/10.1016/j.ijnonlinmec.2018.02.010

    Article  Google Scholar 

  25. Tian, X., Zhang, Y.: Noether’s theorem and its inverse of Birkhoffian system in event space based on Herglotz variational problem. Int. J. Theor. Phys. 57(3), 887–897 (2018). https://doi.org/10.1007/s10773-017-3621-2

    Article  MathSciNet  MATH  Google Scholar 

  26. Tian, X., Zhang, Y.: Noether symmetry and conserved quantities of fractional Birkhoffian system in terms of Herglotz variational problem. Commun. Theor. Phys. 70(3), 280–288 (2018). https://doi.org/10.1088/0253-6102/70/3/280

    Article  MathSciNet  Google Scholar 

  27. Tian, X., Zhang, Y.: Noether’s theorem for fractional Herglotz variational principle in phase space. Chaos Solitons Fractals 119, 50–54 (2019). https://doi.org/10.1016/j.chaos.2018.12.005

    Article  MathSciNet  Google Scholar 

  28. Symon, K.R.: Mechanics, 3rd edn. Addison-Wesley Publishing Company Inc., Reading, MA (1971)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by CNPq and CAPES (Brazilian research funding agencies).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Lazo.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazo, M.J., Paiva, J. & Frederico, G.S.F. Noether theorem for action-dependent Lagrangian functions: conservation laws for non-conservative systems. Nonlinear Dyn 97, 1125–1136 (2019). https://doi.org/10.1007/s11071-019-05036-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05036-z

Keywords

Navigation