Skip to main content
Log in

Study on nonlinear crawling locomotion of modular differential drive soft robot

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper presents a novel modular differential drive soft robot (MDDSR) and its nonlinear model of crawling locomotion. The MDDSR consists of three differential drive soft modules (DDSMs) in series, and each module constructed by two bending soft actuators in parallel to be equally or differentially driven can achieve inchworm-like crawling movement with capability of straight and steering motion. Through sequential motions of the DDSMs, the MDDSR can perform straight and steering crawling locomotion. A nonlinear state-space kinematic model with the principle of minimum frictional work is built to characterize the MDDSR’s crawling locomotion, which is based on nonlinear bending behavior of the soft actuator and nonlinear crawling motion of the DDSMs. Feasibility of the proposed robot and its model is verified through locomotion experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Polygerinos, P., Lyne, S., Wang, Z., Nicolini, L.F., Mosadegh, B., Whitesides, G.M., Walsh, C.J.: Towards a soft pneumatic glove for hand rehabilitation. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1512–1517 (2013)

  2. Polygerinos, P., Wang, Z., Galloway, K.C., Wood, R.J., Walsh, C.J.: Soft robotic glove for combined assistance and at-home rehabilitation. Robot. Auton. Syst. 73, 135–143 (2015)

    Article  Google Scholar 

  3. Wehner, M., Truby, R.L., Fitzgerald, D.J., Mosadegh, B., Whitesides, G.M., Lewis, J.A., Wood, R.J.: An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536(7617), 451–455 (2016)

    Article  Google Scholar 

  4. Kim, H.J., Song, S.H., Ahn, S.H.: A turtle-like swimming robot using a smart soft composite (SSC) structure. Smart Mater. Struct. 22(1), 014007 (2013)

    Article  Google Scholar 

  5. Ahn, S.H., Lee, K.T., Kim, H.J., Wu, R., Kim, J.S., Song, S.H.: Smart soft composite: an integrated 3D soft morphing structure using bend–twist coupling of anisotropic materials. Int. J. Precis. Eng. Manuf. 13(4), 631–634 (2012)

    Article  Google Scholar 

  6. Mao, S., Dong, E., Jin, H., Xu, M., Zhang, S., Yang, J., Low, K.H.: Gait study and pattern generation of a starfish-like soft robot with flexible rays actuated by SMAs. J. Bionic Eng. 11(3), 400–411 (2014)

    Article  Google Scholar 

  7. Lin, H.T., Leisk, G.G., Trimmer, B.: GoQBot: a caterpillar-inspired soft-bodied rolling robot. Bioinspir. Biomim. 6(2), 026007 (2011)

    Article  Google Scholar 

  8. Jenkins, T.E., Chapman, E.M., Bryant, M.: Bio-inspired online variable recruitment control of fluidic artificial muscles. Smart Mater. Struct. 25(12), 125016 (2016)

    Article  Google Scholar 

  9. Umedachi, T., Trimmer, B.A.: Design of a 3D-printed soft robot with posture and steering control. In: Proceedings IEEE International Conference on Robotics and Automation, pp. 2874–2879 (2014)

  10. Wang, W., Lee, J.Y., Rodrigue, H., Song, S.H., Chu, W.S., Ahn, S.H.: Locomotion of inchworm-inspired robot made of smart soft composite (SSC). Bioinspir. Biomim. 9(4), 046006 (2014)

    Article  Google Scholar 

  11. Fei, Y., Gao, H.: Nonlinear dynamic modeling on multi-spherical modular soft robots. Nonlinear Dyn. 78(2), 831–838 (2014)

    Article  MathSciNet  Google Scholar 

  12. Fei, Y., Pang, W.: Analysis on nonlinear turning motion of multi-spherical soft robots. Nonlinear Dyn. 88(2), 883–892 (2017)

    Article  Google Scholar 

  13. Correll, N., Önal, Ç.D., Liang, H., Schoenfeld, E., Rus, D.: Soft autonomous materials—using active elasticity and embedded distributed computation. In: Springer Tracts in Advanced Robotics, vol. 79, pp. 227–240 (2014)

  14. Majidi, C., Shepherd, R.F., Kramer, R.K., Whitesides, G.M., Wood, R.J.: Influence of surface traction on soft robot undulation. Int. J. Robot. Res. 32(13), 1577–1584 (2013)

    Article  Google Scholar 

  15. Shepherd, R.F., Ilievski, F., Choi, W., Morin, S.A., Stokes, A.A., Mazzeo, A.D., Chen, X., Wang, M., Whitesides, G.M.: Multigait soft robot. Proc. Natl. Acad. Sci. 108(51), 20400–20403 (2011)

    Article  Google Scholar 

  16. Tolley, M.T., Shepherd, R.F., Mosadegh, B., Galloway, K.C., Wehner, M., Karpelson, M., Wood, R.J., Whitesides, G.M.: A resilient, untethered soft robot. Soft Robot. 1(3), 213–223 (2014)

    Article  Google Scholar 

  17. Pang, W., Wang, J., Fei, Y.: The structure, design, and closed-loop motion control of a differential drive soft robot. Soft Robot. 5, 71–80 (2017)

    Google Scholar 

  18. Polygerinos, P., Mosadegh, B., Campo, A.: Design|Soft Robotics Toolkit. https://softroboticstoolkit.com/book/pneunets-design. Accessed 10/11/2018

  19. Ilievski, F., Mazzeo, A.D., Shepherd, R.F., Chen, X., Whitesides, G.M.: Soft robotics for chemists. Angew. Chem. 50(8), 1890 (2011)

    Article  Google Scholar 

  20. Polygerinos, P., Galloway, K.C., Savage, E., Herman, M., Donnell, K.O., Walsh, C.J.: Soft robotic glove for hand rehabilitation and task specific training. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 2913–2919 (2015)

  21. Mosadegh, B., Polygerinos, P., Keplinger, C., Wennstedt, S., Shepherd, R.F., Gupta, U., Shim, J., Bertoldi, K., Walsh, C.J., Whitesides, G.M.: Pneumatic networks for soft robotics that actuate rapidly. Adv. Funct. Mater. 24(15), 2163–2170 (2014)

    Article  Google Scholar 

  22. Sun, Y., Song, Y.S., Paik, J.: Characterization of silicone rubber based soft pneumatic actuators. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4446–4453 (2013)

  23. Lin, H.-T., Slate, D.J., Paetsch, C.R., Dorfmann, A.L., Trimmer, B.A.: Scaling of caterpillar body properties and its biomechanical implications for the use of a hydrostatic skeleton. J. Exp. Biol. 214, 1194–1204 (2011)

    Article  Google Scholar 

  24. Menciassi, A., Gorini, S., Pernorio, G., Dario, P.: A SMA actuated artificial earthworm. In: IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA ’04. 2004, vol. 4, pp. 3282–3287 (2004)

  25. Loepfe, M., Schumacher, C.M., Lustenberger, U.B., Stark, W.J.: An untethered, jumping roly–poly soft robot driven by combustion. Soft Robot. 2(1), 33–41 (2015)

    Article  Google Scholar 

  26. Popov, V.L.: Coulomb’s Law of Friction, pp. 133–154. Springer, Berlin (2010)

    Google Scholar 

  27. Ma, S., Wang, T.: Planar multiple-contact problems subject to unilateral and bilateral kinetic constraints with static coulomb friction. Nonlinear Dyn. 94(1), 99–121 (2018)

    Article  MATH  Google Scholar 

  28. Siburg, K.F.: The Principle of Least Action in Geometry and Dynamics. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  29. Lagarias, J.C., Wright, M.H., Wright, P.E., Reeds, J.A.: Convergence properties of the nelder-mead simplex method in low dimensions. SIAM J. Optim. 9(1), 112–147 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 51475300 and 51875335, and Joint fund of the Ministry of Education No. 18GFA-ZZ07-171.

Funding

This work was funded by the National Natural Science Foundation of China (Grant No. 51475300 and 51875335) and Joint fund of the Ministry of Education (No.18GFA-ZZ07-171).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanqiong Fei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Min, J., Fei, Y. et al. Study on nonlinear crawling locomotion of modular differential drive soft robot. Nonlinear Dyn 97, 1107–1123 (2019). https://doi.org/10.1007/s11071-019-05035-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05035-0

Keywords

Navigation