Skip to main content
Log in

On the response of MEMS resonators under generic electrostatic loadings: theoretical analysis

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We present an investigation of the dynamic behavior of an electrostatically actuated resonant structure, resonator, under the simultaneous excitation of primary and subharmonic resonances. A comprehensive analytical solution is obtained via the method of Multiple Time Scales (MTS), which is applicable for generic electrostatic loading cases. Results using different MTS scaling methods in the equations of motion and loading conditions are compared. These results are further verified against results obtained using direct time integration of the equation of motion. It is observed that for a generic parallel-plate electrostatic loading case, the direct forcing component at the excitation frequency, and the direct and parametric excitation components at double the excitation frequency must be considered for accurate prediction of the structure’s response. Further, the case of simultaneous excitations of primary and subharmonic resonance, where both excitations are of comparable strength, is examined under various electrostatic loading conditions. We show mixed behaviors of the resonator transiting from a subharmonic-dominated response, characterized by the sudden jumps in amplitude and smaller monostable regime, to primary-dominated response exhibiting gradual amplitude increase and larger monostable regimes. This transition behavior can be potentially used for applications, such as electrometers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhang, W., Turner, K.L.: Application of parametric resonance amplification in a single-crystal silicon micro-oscillator based mass sensor. Sens. Actuators A Phys. 122, 23–30 (2005)

    Article  Google Scholar 

  2. Bouchaala, A., Jaber, N., Shekhah, O., Chernikova, V., Eddaoudi, M., Younis, M.I.: A smart microelectromechanical sensor and switch triggered by gas. Appl. Phys. Lett. 109, 013502 (2016)

    Article  Google Scholar 

  3. Mahboob, I., Flurin, E., Nishiguchi, K., Fujiwara, A., Yamaguchi, H.: Interconnect-free parallel logic circuits in a single mechanical resonator. Nat. Commun. 2, 198 (2011)

    Article  Google Scholar 

  4. Hafiz, M.A.A., Kosuru, L., Younis, M.I.: Microelectromechanical reprogrammable logic device. Nat. Commun. 7, 11137 (2016)

    Article  Google Scholar 

  5. Guerra, D.N., Bulsara, A.R., Ditto, W.L., Sinha, S., Murali, K., Mohanty, P.: A noise-assisted reprogrammable nanomechanical logic gate. Nano Lett. 10, 1168–1171 (2010)

    Article  Google Scholar 

  6. Ilyas, S., Arevalo, A., Bayes, E., Foulds, I.G., Younis, M.I.: Torsion based universal MEMS logic device. Sens. Actuators A Phys. 236, 150–158 (2015)

    Article  Google Scholar 

  7. Sinha, N., Jones, T.S., Guo, Z., Piazza, G.: Body-biased complementary logic implemented using AlN piezoelectric MEMS switches. J. Microelectromech. Syst. 21, 484–496 (2012)

    Article  Google Scholar 

  8. Wong, A.C., Nguyen, C.C.: Micromechanical mixer-filters (“mixlers”). J. Microelectromech. Syst. 13, 100–112 (2004)

    Article  Google Scholar 

  9. Ilyas, S., Chappanda, K.N., Younis, M.I.: Exploiting nonlinearities of micro-machined resonators for filtering applications. Appl. Phys. Lett. 110, 253508 (2017)

    Article  Google Scholar 

  10. Suh, J., LaHaye, M.D., Echternach, P.M., Schwab, K.C., Roukes, M.L.: Parametric amplification and back-action noise squeezing by a qubit-coupled nanoresonator. Nano Lett. 10, 3990–3994 (2010)

    Article  Google Scholar 

  11. Eichler, A., Chaste, J., Moser, J., Bachtold, A.: Parametric amplification and self-oscillation in a nanotube mechanical resonator. Nano Lett. 11, 2699–2703 (2011)

    Article  Google Scholar 

  12. Rugar, D., Grütter, P.: Mechanical parametric amplification and thermomechanical noise squeezing. Phys. Rev. Lett. 67, 699 (1991)

    Article  Google Scholar 

  13. Rhoads, J.F., Shaw, S.W., Turner, K.L., Baskaran, R.: Tunable microelectromechanical filters that exploit parametric resonance. J. Vib. Acoust. 127, 423–430 (2005)

    Article  Google Scholar 

  14. Ilyas, S., Ramini, A., Arevalo, A., Younis, M.I.: An experimental and theoretical investigation of a micromirror under mixed-frequency excitation. J. Microelectromech. Syst. 24, 1124–1131 (2005)

    Article  Google Scholar 

  15. Ilyas, S., Jaber, N., Younis, M.I.: MEMS logic using mixed-frequency excitation. J. Microelectromech. Syst. 26, 1140–1146 (2017)

    Article  Google Scholar 

  16. Kim, C.H., Lee, C.W., Perkins, N.C.: Nonlinear vibration of sheet metal plates under interacting parametric and external excitation during manufacturing. In: ASME 2003 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. 2481–2489 (2003)

  17. Krylov, S., Gerson, Y., Nachmias, T., Keren, U.: Excitation of large-amplitude parametric resonance by the mechanical stiffness modulation of a microstructure. J. Micromech. Microeng. 20, 015041 (2009)

    Article  Google Scholar 

  18. Shahgholi, M., Khadem, S.E.: Primary and parametric resonances of asymmetrical rotating shafts with stretching nonlinearity. Mech. Mach. Theory 51, 131–144 (2012)

    Article  Google Scholar 

  19. Dolev, A., Bucher, I.: Optimizing the dynamical behavior of a dual-frequency parametric amplifier with quadratic and cubic nonlinearities. Nonlinear Dyn. 92, 1955–1974 (2018)

    Article  Google Scholar 

  20. Nayfeh, A.H.: Introduction to Perturbation Techniques. Wiley, Hoboken (2011)

    MATH  Google Scholar 

  21. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, Hoboken (2008)

    MATH  Google Scholar 

  22. Abdel-Rahman, E.M., Nayfeh, A.H.: Secondary resonances of electrically actuated resonant microsensors. J. Micromech. Microeng. 13, 491 (2003)

    Article  Google Scholar 

  23. Nayfeh, A.H.: The response of single degree of freedom systems with quadratic and cubic non-linearities to a subharmonic excitation. J. Sound Vib. 89, 457–470 (1983)

    Article  MATH  Google Scholar 

  24. Nayfeh, A.H., Younis, M.I.: Dynamics of MEMS resonators under superharmonic and subharmonic excitations. J. Micromech. Microeng. 15, 1840 (2005)

    Article  Google Scholar 

  25. Jin, Z., Wang, Y.: Electrostatic resonator with second superharmonic resonance. Sens. Actuators A Phys. 64, 273–279 (1998)

    Article  Google Scholar 

  26. Nayfeh, A.H.: The response of non-linear single-degree-of-freedom systems to multifrequency excitations. J. Sound Vib. 102, 403–414 (1985)

    Article  Google Scholar 

  27. Younis, M.I., Alsaleem, F.: Exploration of new concepts for mass detection in electrostatically-actuated structures based on nonlinear phenomena. J. Comput. Nonlinear Dyn. 4, 021010 (2009)

    Article  Google Scholar 

  28. Ouakad, H.M., Younis, M.I.: Nonlinear dynamics of electrically actuated carbon nanotube resonators. J. Comput. Nonlinear Dyn. 5, 011009 (2010)

    Article  Google Scholar 

  29. Nayfeh, A.H.: Quenching of primary resonance by a superharmonic resonance. J. Sound Vib. 92, 363–377 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  30. Gallacher, B.J., Burdess, J.S., Harish, K.M.: A control scheme for a MEMS electrostatic resonant gyroscope excited using combined parametric excitation and harmonic forcing. J. Micromech. Microeng. 16, 320 (2006)

    Article  Google Scholar 

  31. Zhang, W.M., Meng, G.: Nonlinear dynamic analysis of electrostatically actuated resonant MEMS sensors under parametric excitation. IEEE Sens. J. 7, 370–380 (2007)

    Article  Google Scholar 

  32. DeMartini, B.E., Rhoads, J.F., Turner, K.L., Shaw, S.W., Moehlis, J.: Linear and nonlinear tuning of parametrically excited MEMS oscillators. J. Microelectromech. Syst. 16, 310–318 (2007)

    Article  Google Scholar 

  33. Zhang, W., Baskaran, R., Turner, K.L.: Changing the behavior of parametric resonance in MEMS oscillators by tuning the effective cubic stiffness. In: The Sixteenth Annual International Conference on Micro Electro Mechanical Systems, pp. 173–176 (2003)

  34. Rhoads, J.F., Shaw, S.W., Turner, K.L., Moehlis, J., DeMartini, B.E., Zhang, W.: Generalized parametric resonance in electrostatically actuated microelectromechanical oscillators. J. Sound Vib. 296, 797–829 (2006)

    Article  Google Scholar 

  35. Younis, M.I.: MEMS Linear and Nonlinear Statics and Dynamics. Springer, Berlin (2011)

    Book  Google Scholar 

  36. Xu, T., Younis, M.I.: Nonlinear dynamics of carbon nanotubes under large electrostatic force. J. Comput. Nonlinear Dyn. 11, 021009 (2016)

    Article  Google Scholar 

  37. Jalil, J., Zhu, Y., Ekanayake, C., Ruan, Y.: Sensing of single electrons using micro and nano technologies: a review. Nanotechnology 28, 142002 (2017)

    Article  Google Scholar 

  38. Zhao, J., Ding, H., Xie, J.: Electrostatic charge sensor based on a micromachined resonator with dual micro-levers. Appl. Phys. Lett. 106, 233505 (2015)

    Article  Google Scholar 

  39. Chen, D., Zhao, J., Wang, Y., Xie, J.: An electrostatic charge sensor based on micro resonator with sensing scheme of effective stiffness perturbation. J. Micromech. Microeng. 27, 065002 (2017)

    Article  Google Scholar 

  40. Zhang, H., Huang, J., Yuan, W., Chang, H.: A high-sensitivity micromechanical electrometer based on mode localization of two degree-of-freedom weakly coupled resonators. J. Microelectromech. Syst. 25, 937–946 (2016)

    Article  Google Scholar 

  41. Ilyas, S., Alfosail, F.K., Bellaredj, M.L., Younis, M.I.: On the response of MEMS resonators under generic electrostatic loadings: experiments and applications. Nonlinear Dyn. 95(3), 2263–2274 (2018). https://doi.org/10.1007/s11071-018-4690-3

    Article  Google Scholar 

Download references

Acknowledgements

This publication is based upon work supported by the King Abdullah University of Science and Technology (KAUST) research funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad I. Younis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilyas, S., Alfosail, F.K. & Younis, M.I. On the response of MEMS resonators under generic electrostatic loadings: theoretical analysis. Nonlinear Dyn 97, 967–977 (2019). https://doi.org/10.1007/s11071-019-05024-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05024-3

Keywords

Navigation