Skip to main content
Log in

Neuronal synchronization enhanced by neuron–astrocyte interaction

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this study, we consider the problem of signal processing in neuron–astrocyte networks where the intercellular communication is described on the basis of a tripartite synapse concept. This type of communication involves combined contributions of pre- and postsynaptic neuronal compartments and components of the surrounding astrocyte to the processes of information transmission. Astrocyte-mediated regulation of neuronal activity is considered through the analysis of the response changes in the classical Hodgkin–Huxley model driven by excitatory synaptic current. It is shown that the complicated astrocyte-dependent dynamics of this current can lead to non-trivial changes in individual postsynaptic neuronal activity and, hence, in the cooperative activation of neuronal groups linked by the “astrocyte-mediated bridge”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Llinas, R., Sugimori, M.: Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. J. Physiol. 305, 197–213 (1980)

    Article  Google Scholar 

  2. Agmon-Snir, H., Carr, C.E., Rinzel, J.: The role of dendrites in auditory coincidence detection. Nature 393, 268–272 (1998)

    Article  Google Scholar 

  3. Hille, B.: Ion Channels of Excitable Membranes. Sinauer Associates, Sunderland (2001)

    Google Scholar 

  4. Matsumoto, G., Aihara, K., Hanyu, Y., Takahashi, N., Yoshizawa, S., Nagumo, J.: Chaos and phase locking in normal squid axons. Phys. Lett. A 123, 162–166 (1987)

    Article  Google Scholar 

  5. Parmananda, P., Mena, C.H., Baier, G.: Resonant forcing of a silent Hodgkin–Huxley neuron. Phys. Rev. E 66, 047202 (2002)

    Article  MathSciNet  Google Scholar 

  6. Lee, S.-G., Neiman, A., Kim, S.: Coherence resonance in a Hodgkin–Huxley neuron. Phys. Rev. E 57(3), 3292–3297 (1998)

    Article  Google Scholar 

  7. Pankratova, E.V., Polovinkin, A.V., Mosekilde, E.: Resonant activation in a stochastic Hodgkin–Huxley model: interplay between noise and suprathreshold driving effects. Eur. Phys. J. B 45(3), 391–397 (2005)

    Article  Google Scholar 

  8. Pankratova, E.V., Belykh, V.N., Mosekilde, E.: Role of the driving frequency in a randomly perturbed Hodgkin–Huxley neuron with suprathreshold forcing. Eur. Phys. J. B 53(4), 529–536 (2006)

    Article  Google Scholar 

  9. Tsodyks, M.V., Markram, H.: The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. PNAS 94(2), 719–723 (1997)

    Article  Google Scholar 

  10. Uzuntarla, M.: Inverse stochastic resonance induced by synaptic background activity with unreliable synapses. Phys. Lett. A 377(38), 2585–2589 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Uzuntarla, M., Ozer, M., Ileri, U., Calim, A., Torres, J.J.: Effects of dynamic synapses on noise-delayed response latency of a single neuron. Phys. Rev. E 92(6), 062710 (2015)

    Article  Google Scholar 

  12. Uzuntarla, M., Torres, J.J., So, P., Ozer, M., Barreto, E.: Double inverse stochastic resonance with dynamic synapses. Phys. Rev. E 95, 012404 (2017)

    Article  Google Scholar 

  13. Verkhratsky, A., Butt, A.: Glial Neurobiology. A Textbook, 1st edn, p. 224. Wiley, Hoboken (2007)

    Book  Google Scholar 

  14. Li, J., Tang, J., Ma, J., Du, M., Wang, R., Wu, Y.: Dynamic transition of neuronal firing induced by abnormal astrocytic glutamate oscillation. Sci. Rep. 6, 32343 (2016)

    Article  Google Scholar 

  15. Guo, S., Tang, J., Ma, J., Wang, C.: Autaptic modulation of electrical activity in a network of neuron-coupled astrocyte. Complexity 2017, 4631602 (2017)

    MathSciNet  Google Scholar 

  16. Araque, A.: Astrocytes process synaptic information. Neuron Glia Biol. 4, 3–10 (2008)

    Article  Google Scholar 

  17. Hülsmann, S., Oku, Y., Zhang, W., Richter, D.W.: Metabolic coupling between glia and neurons is necessary for maintaining respiratory activity in transverse medullary slices of neonatal mouse. Eur. J. Neurosci. 12, 856–862 (2000)

    Article  Google Scholar 

  18. Baudoux, S., Parker, D.: Glial-toxin-mediated disruption of spinal cord locomotor network function and its modulation by 5-HT. Neuroscience 153, 1332–1343 (2008)

    Article  Google Scholar 

  19. Angulo, M.C., Kozlov, A.S., Charpak, S., Audina, E.: Glutamate released from glial cells synchronizes neuronal activity in the hippocampus. J. Neurosci. 24, 6920–6927 (2004)

    Article  Google Scholar 

  20. Fellin, T., Halassa, M.M., Terunuma, M., Succol, F., Takano, H., Frank, M., Moss, S.J., Haydon, P.G.: Endogenous nonneuronal modulators of synaptic transmission control cortical slow oscillations in vivo. Proc. Natl. Acad. Sci. USA 106, 15037–15042 (2009)

    Article  Google Scholar 

  21. Perea, G., Araque, A.: Properties of synaptically evoked astrocyte calcium signal reveal synaptic information processing by astrocytes. J. Neurosci. 25, 2192–2203 (2005)

    Article  Google Scholar 

  22. Kozlov, A.S., Angulo, M.C., Audinat, E., Charpak, S.: Target cell-specific modulation of neuronal activity by astrocytes. Proc. Natl. Acad. Sci. USA 103, 10058–10063 (2006)

    Article  Google Scholar 

  23. Navarrete, M., Araque, A.: Endocannabinoids mediate neuron-astrocyte communication. Neuron 57, 883–893 (2008)

    Article  Google Scholar 

  24. Nadkarni, S., Jung, P.: Dressed neurons: modeling neural-glial interactions. Phys. Biol. 1, 35–41 (2004)

    Article  Google Scholar 

  25. Nadkarni, S., Jung, P.: Modeling synaptic transmission of the tripartite synapse. Phys. Biol. 4, 1–9 (2007)

    Article  Google Scholar 

  26. Volman, V., Ben-Jacob, E., Levine, H.: The astrocyte as a gate keeper of synaptic information transfer. Neural Comput. 19, 303–326 (2006)

    Article  MATH  Google Scholar 

  27. Perea, G., Navarrete, M., Araque, A.: Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci. 32, 421–431 (2009)

    Article  Google Scholar 

  28. De Pittá, M., Volman, V., Berry, H., Ben-Jacob, E.: A tale of two stories: astrocyte regulation of synaptic depression and facilitation. PLoS Comput. Biol. 7, e1002293 (2011). https://doi.org/10.1371/journal.pcbi.1002293

    Article  Google Scholar 

  29. Postnov, D.E., Ryazanova, L.S., Sosnovtseva, O.V.: Functional modeling of neural-glial interaction. Biosystems 89, 84–91 (2007)

    Article  Google Scholar 

  30. Wade, J.J., McDaid, L.J., Harkin, J., Crunelli, V., Kelso, J.A.S.: Bidirectional coupling between astrocytes and neurons mediates learning and dynamic coordination in the brain: a multiple modeling approach. PLoS ONE 6, e29445 (2011). https://doi.org/10.1371/journal.pone.0029445

    Article  Google Scholar 

  31. Amiri, M., Bahrami, F., Janahmadi, M.: Functional contributions of astrocytes in synchronization of a neuronal network model. J. Theor. Biol. 292C, 60–70 (2011)

    MathSciNet  MATH  Google Scholar 

  32. Sasaki, T., Ishikawa, T., Abe, R., Nakayama, R., Asada, A., Matsuki, N., Ikegaya, Y.: Astrocyte calcium signalling orchestrates neuronal synchronization in organotypic hippocampal slices. J. Physiol. 592(13), 2771–2783 (2014)

    Article  Google Scholar 

  33. Pirttimaki, T.M., Sims, R.E., Saunders, G., Antonio, S.A., Codadu, N.K., Parri, H.R.: Astrocyte-mediated neuronal synchronization properties revealed by false gliotransmitter release. J. Neurosci. 37(41), 9859–9870 (2017)

    Article  Google Scholar 

  34. Szabó, Z., Héja, L., Szalay, G., Kékesi, O., Füredi, A., Szebényi, K., Dobolyi, A., Orbán, T.I., Kolacsek, O., Tompa, T., Miskolczy, Z., Biczók, L., Rózsa, B., Sarkadi, B., Kardos, J.: Extensive astrocyte synchronization advances neuronal coupling in slow wave activity in vivo. Sci. Rep. 7(1), 6018 (2017)

    Article  Google Scholar 

  35. Poskanzer, K.E., Yuste, R.: Astrocytes regulate cortical state switching in vivo. Proc. Natl. Acad. Sci. 113(19), E2675–E2684 (2016)

    Article  Google Scholar 

  36. Lazarevich, I.A., Stasenko, S.V., Kazantsev, V.B.: Synaptic multistability and network synchronization induced by the neuron-glial interaction in the brain. JETP Lett. 105(3), 210–213 (2017)

    Article  Google Scholar 

  37. Gordleeva, SYu., Stasenko, S.V., Semyanov, A.V., Dityatev, A.E., Kazantsev, V.B.: Bi-directional astrocytic regulation of neuronal activity within a network. Front. Comput. Neurosci. 6(92), 1–11 (2012)

    Google Scholar 

  38. Parpura, V., Zorec, R.: Gliotransmission: exocytotic release from astrocytes. Brain Res. Rev. 63, 83–92 (2010)

    Article  Google Scholar 

  39. Volterra, A., Meldolesi, J.: Astrocytes, from brain glue to communication elements: the revolution continues. Nat. Rev. Neurosci. 6, 626–640 (2005)

    Article  Google Scholar 

  40. Perea, G., Araque, A.: Astrocytes potentiate transmitter release at single hippocampal synapses. Science 317, 1083–1086 (2007)

    Article  Google Scholar 

  41. McGuinness, L., Taylor, C., Taylor, R.D.T., Yau, C., Langenhan, T., Hart, M.L., Christian, H., Tynan, P.W., Donnelly, P., Emptage, N.J.: Presynaptic NMDARs in the hippocampus facilitate transmitter release at theta frequency. Neuron 68, 1109–1127 (2010)

    Article  Google Scholar 

  42. Semyanov, A., Kullmann, D.M.: Modulation of GABAergic signaling among interneurons by metabotropic glutamate receptors. Neuron 25, 663–672 (2000)

    Article  Google Scholar 

  43. Henneberger, C., Papouin, T., Oliet, S., Rusakov, D.: Long-term potentiation depends on release of D-serinefromastrocytes. Nature 463, 232–236 (2010)

    Article  Google Scholar 

  44. Bergersen, L.H., Morland, C., Ormel, L., Rinholm, J.E., Larsson, M., Wold, J.F., Roe, A.T., Stranna, A., Santello, M., Bouvier, D., Ottersen, O.P., Volterra, A., Gundersen, V.: Immunogold detection of L-glutamate and D-serine in small synaptic like microvesicles in adult hippocampal astrocytes. Cereb. Cortex 22, 1690–1697 (2011)

    Article  Google Scholar 

  45. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)

    Article  Google Scholar 

  46. Shih, J.Y., Atencio, C.A., Schreiner, C.E.: Improved stimulus representation by short interspike intervals in primary auditory cortex. J. Neurophysiol. 105(4), 1908–1917 (2011)

    Article  Google Scholar 

  47. Martiniuc, A.V., Knoll, A.: Interspike interval based filtering of directional selective retinal ganglion cells spike trains. Comput. Intell. Neurosci. 2012, 918030 (2012)

    Article  Google Scholar 

  48. Abarbanel, H.D.I., Huerta, R., Rabinovich, M.I., Rulkov, N.F., Rovat, P.F., Selverston, A.I.: Synchronized action of synaptically coupled chaotic model neurons. Neural Comput. 8, 1567–1602 (1996)

    Article  Google Scholar 

  49. Zhou, C., Kurths, J.: Noise-induced synchronization and coherence resonance of a Hodgkin–Huxley model of thermally sensitive neurons. Chaos 13, 401 (2003)

    Article  Google Scholar 

  50. Ivanchenko, M.V., Osipov, G.V., Shalfeev, V.D., Kurths, J.: Phase synchronization in ensembles of bursting oscillators. Phys. Rev. Lett. 93, 134101–4 (2004)

    Article  Google Scholar 

  51. Wang, Q., Lu, Q., Chen, G., Guo, D.: Chaos synchronization of coupled neurons with gap junction. Phys. Lett. A 356, 17 (2006)

    Article  MATH  Google Scholar 

  52. Belykh, V.N., Pankratova, E.V.: Synchronization and control in ensembles of periodic and chaotic neuronal elements with time dependent coupling. IFAC Proc. Vol. 40(14), 120–125 (2007)

    Article  Google Scholar 

  53. Komarov, M.A., Osipov, G.V., Suykens, J.A.K.: Variety of synchronous regimes in neuronal ensembles. Chaos 18, 037121 (2008)

    Article  MathSciNet  Google Scholar 

  54. Erichsen, R., Brunnet, L.G.: Multistability in networks of Hindmarsh-Rose neurons. Phys. Rev. E 78(6), 061917 (2008)

    Article  Google Scholar 

  55. Pankratova, E.V., Belykh, V.N., Mosekilde, E.: Dynamics and synchronization of noise perturbed ensembles of periodically activated neuron cells. Int. J. Bifurc. Chaos 18(10), 2807–2815 (2008)

    MathSciNet  MATH  Google Scholar 

  56. Wang, Z., Shi, X.: Lag synchronization of multiple identical Hindmarsh-Rose neuron models coupled in a ring structure. Nonlinear Dyn. 60, 375–383 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  57. Torres, J.J., Kappen, H.J.: Emerging phenomena in neural networks with dynamic synapses and their computational implications. Front. Comput. Neurosci. 7, 30 (2013)

    Article  Google Scholar 

  58. Ehrich, S., Pikovsky, A., Rosenblum, M.: From complete to modulated synchrony in networks of identical Hindmarsh-Rose neurons. Eur. Phys. J. Spec. Topics 222, 2407–2416 (2013)

    Article  Google Scholar 

  59. Araque, A., Navarrete, M.: Glial cells in neuronal network function. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365(1551), 2375–2381 (2010)

    Article  Google Scholar 

  60. Syková, E., Nicholson, C.: Diffusion in brain extracellular space. Physiol. Rev. 88, 1277–1340 (2008)

    Article  Google Scholar 

  61. Theodosis, D.T., Poulain, D.A., Oliet, S.H.: Activity-dependent structural and functional plasticity of astrocyte-neuron interactions. Physiol. Rev. 88, 983–1008 (2008)

    Article  Google Scholar 

  62. Seifert, G., Schilling, K., Steinhaüser, C.: Astrocyte dysfunction in neurological disorders: a molecular perspective. Nat. Rev. Neurosci. 7, 194–206 (2006)

    Article  Google Scholar 

  63. Tzingounis, A.V., Wadiche, J.I.: Glutamate transporters: confining runaway excitation by shaping synaptic transmission. Nat. Rev. Neurosci. 8, 935–947 (2007)

    Article  Google Scholar 

  64. Maragakis, N.J., Rothstein, J.D.: Glutamate transporters: animal models to neurologic disease. Neurobiol. Dis. 15, 461–473 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

The numerical computations were carried out on high-performance cluster of Lobachevsky State University of Nizhny Novgorod.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeniya V. Pankratova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work was supported by the Ministry of Science and Higher Education of the Russian Federation (Project No. 14.Y26.31.0022).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pankratova, E.V., Kalyakulina, A.I., Stasenko, S.V. et al. Neuronal synchronization enhanced by neuron–astrocyte interaction. Nonlinear Dyn 97, 647–662 (2019). https://doi.org/10.1007/s11071-019-05004-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05004-7

Keywords

Navigation