Skip to main content
Log in

Route to chaos in a coupled microresonator system with gain and loss

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We consider chaotic dynamics of a system of two coupled ring resonators with a linear gain and a nonlinear absorption. Such a structure can be implemented in various settings including microresonator nanostructures, polariton condensates, optical waveguides or atomic Bose–Einstein condensates of ultra-cold atoms placed in a circular-shaped trap. From the theoretical point of view, this system is attractive due to its modulational instability and rich structure, including various types of spontaneous symmetry breaking, period-doubling bifurcations, eventually leading to chaotic regime. It is described by set of partial differential equations but we show that the so-called Galerkin approximation can explain most of the system characteristics mapping it on the dynamics of few coupled oscillator modes. The main goal of the present study is to investigate various routes to chaos in our non-Hermitian system and to show the correspondence between the continuous operator problem and its discrete representation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Smith, R.G.: Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering. Appl. Opt 11, 2489 (1972)

    Article  Google Scholar 

  2. Agrawal, G.P.: Nonlinear Fiber Optics, 3rd edn. Academic Press, SanDiego (2001)

    MATH  Google Scholar 

  3. Boyd, R.W.: Nonlinear Optics. Academic Press, SanDiego (1992)

    Google Scholar 

  4. Deng, L., Hagley, E.W., Wen, J., Trippenbach, M., Band, Y., Julienne, P.S.: Four-wave mixing with matter waves. Nature 398, 218 (1999)

    Article  Google Scholar 

  5. Trippenbach, M., Band, Y.Y., Edwards, M., Doery, M., Julienne, P.S., Hagley, E.W., Deng, L., Kozuma, M., Helmerson, K., Rolston, S.L., Phillips, W.D.: Coherence properties of an atom laser. J. Phys. B 33, 47 (2000)

    Article  Google Scholar 

  6. Lagoudakis, K.: The Physics of Exciton–Polariton Condensates. EPFL Press, CRC Press (2013)

    Book  Google Scholar 

  7. Laussy, F.P., Timofeev, V., Sanvitto, D.: Exciton Polaritons in Microcavities: New Frontiers. Springer, Berlin (2012)

    Google Scholar 

  8. Deng, H., Weihs, G., Santori, C., Bloch, J., Yamamoto, Y.: Condensation of semiconductor microcavity exciton polaritons. Science 298, 199 (2002)

    Article  Google Scholar 

  9. Kasprzak, J., Richard, M., Kundermann, S., Baas, A., Jeambrun, P., Keeling, J.M.J., Marchetti, F.M., Szymanska, M.H., Andre, R., Staehli, J.L., Savona, V., Littlewood, P.B., Deveaud, B., Si Dang, L.: Bose–Einstein condensation of exciton polaritons. Nature 443, 409 (2006)

    Article  Google Scholar 

  10. Balili, R.B., Hartwell, V., Snoke, D., Pfeiffe, L., West, K.: Bose–Einstein condensation of microcavity polaritons in a trap. Science 316, 1007 (2007)

    Article  Google Scholar 

  11. Deng, H., Haug, H., Yamamoto, Y.: Exciton-polariton Bose–Einstein condensation. Rev. Mod. Phys. 82, 1489 (2010)

    Article  Google Scholar 

  12. Byrnes, T., Kim, N.Y., Yamamoto, Y.: Exciton-polariton condensates. Nat. Phys. 10, 10–13 (2014)

    Google Scholar 

  13. Sun, Y., Fan, X.: Optical ring resonators for biochemical and chemical sensing. Anal. Bioanal. Chem. 399, 205 (2011)

    Article  Google Scholar 

  14. Braginsky, V.B., Gorodetsky, M.L., Ilchenko, V.S.: Quality-factor and nonlinear properties of optical whispering-gallery modes. Phys. Rev. A 137, 393 (1989)

    Google Scholar 

  15. Blom, F.C., van Dijk, D.R., Hoekstra, H.J., Driessen, A., Popma, T.J.A.: Experimental study of integrated-optics microcavity resonators: toward an all-optical switching device. Appl. Phys. Lett. 71, 747 (1997)

    Article  Google Scholar 

  16. Post, E.J.: Sagnac effect. Rev. Mod. Phys. 39, 475 (1967)

    Article  Google Scholar 

  17. Knight, J.C., Driver, H.S.T., Hutcheon, R.J., Robertson, G.N.: Core-resonance capillary-fiber whispering-gallery-mode laser. Opt. Lett. 17, 1280 (1992)

    Article  Google Scholar 

  18. Yamamoto, Y., Slusher, R.E.: Optical Processes in microcavities. Phys. Today 46, 66 (1993)

    Article  Google Scholar 

  19. Herr, T., Brasch, V., Jost, J.D., Wang, C.Y., Kondratiev, N.M., Gorodetsky, M.L., Kippenberg, T.J.: Temporal solitons in optical microresonators. Nat. Photonics 8, 145 (2014)

    Article  Google Scholar 

  20. Guo, H., Karpov, M., Lucas, E., Kordts, A., Pfeiffer, M.H.P., Brasch, V., Lihachev, G., Lobanov, V.E., Gorodetsky, M.L., Kippenberg, T.J.: Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators. Nat. Phys. 13, 94 (2017)

    Article  Google Scholar 

  21. Lucas, E., Karpov, M., Guo, H., Gorodetsky, M.L., Kippenberg, T.J.: Breathing dissipative solitons in optical microresonators. Nat. Commun. 8, 736 (2017)

    Article  Google Scholar 

  22. Yu, M., et al.: Breather soliton dynamics in microresonators. Nat. Commun. 8, 14569 (2017)

    Article  Google Scholar 

  23. Vahala, K.: Optical Microcavities. World Scientific Publishing, Singapore (2004)

    Book  Google Scholar 

  24. Cundiff, S.T.: New generation of combs. Nature 450, 1175 (2007)

    Article  Google Scholar 

  25. Kippenberg, T.J., Holzwarth, R., Diddams, S.A.: Microresonator-based optical frequency combs. Science 332, 555–559 (2011)

    Article  Google Scholar 

  26. Gorodetsky, M.L., Lobanov, V.E., Lihachev, G., Pavlov, N., Koptyaev, S.N.: Kerr combs in microresonators: from chaos to solitons and from theory to experiment. Proc. SPIE 10090, 100900H–1 (2017)

    Google Scholar 

  27. Hung, N.V., Zegadlo, K.B., Ramaniuk, A., Konotop, V.V., Trippenbach, M.: Modulational instability of coupled ring waveguides with linear gain and nonlinear loss. Sci. Rep. 7, 4089 (2017)

    Article  Google Scholar 

  28. Ramaniuk, A., Hung, N.V., Giersig, M., Kempa, K., Konotop, V.V., Trippenbach, M.: Vortex creation without stirring in coupled ring resonators with gain and loss. Symmetry 10, 195 (2018)

    Article  Google Scholar 

  29. Ern, A., Guermond, J.-L.: Theory and Practice of Finite Elements. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  30. Galerkin, B.G.: On electrical circuits for the approximate solution of the Laplace equation. Vestnik Inzh 19, 897 (1915)

    Google Scholar 

  31. Chekroun, M.D., Ghil, M., Liu, H., Wang, S.: Low-dimensional Galerkin approximations of nonlinear delay differential equations. Discrete Contin. Dyn. Syst. 36, 4133–4177 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wanga, Y.-S., Chien, C.-S.: A spectral-Galerkin continuation method using Chebyshev polynomials for the numerical solutions of the Gross–Pitaevskii equation. J. Comput. Appl. Math. 235, 2740–2757 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Bland, T., Parker, N.G., Proukakis, N.P., Malomed, B.A.: Probing quasi-integrability of the Gross–Pitaevskii equation in a harmonic-oscillator potential. J. Phys. B: At. Mol. Opt. Phys. 51, 205303 (2018)

    Article  Google Scholar 

  34. Driben, R., Konotop, V.V., Malomed, B.A., Meier, T.: Dynamics of dipoles and vortices in nonlinearly coupled three-dimensional field oscillators. Phys. Rev. E 94, 012207 (2016)

    Article  Google Scholar 

  35. Wang, J., Zhou, Y., Liu, X.: A space-time fully decoupled wavelet Galerkin Method for solving multidimensional nonlinear Schrodinger equations with damping. Math. Probl. Eng. 11, 1 (2017)

    MathSciNet  Google Scholar 

  36. Kukavica, I., Ugurlu, K., Ziane, M.: On the Galerkin approximation and strong norm bounds for the stochastic Navier–Stokes equations with multiplicative noise. Differ. Integral Equ. 31, 173 (2018)

    MathSciNet  MATH  Google Scholar 

  37. Thiede, E., Giannakis, D., Dinner, A.R., Weare, J.: Galerkin approximation of dynamical quantities using trajectory data. arXiv:1810.01841

  38. Kosiorek, A., Kandulski, W., Chudzinski, P., Kempa, K., Giersig, M.: Shadow nanosphere lithography: simulation and experiment. Nano. Let. 4, 1359 (2004)

    Article  Google Scholar 

  39. Sigler, A., Malomed, B.A.: Solitary pulses in linearly coupled cubic-quintic Ginzburg–Landau equations. Phys. D 212, 305 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  40. Takens, F.: Detecting strange attractors in turbulence. In: Rand, D.A., Young, L.-S. (eds.) Dynamical Systems and Turbulence, Lecture Notes in Mathematics, vol. 898, pp. 366–381. Springer, Berlin (1981)

    Google Scholar 

  41. Mane, R.: On the dimension of the compact invariant sets of certain nonlinear maps. In: Rand, D.A., Young, L.-S. (eds.) Dynamical Systems and Turbulence, Lecture Notes in Mathematics, vol. 898, pp. 230–242. Springer, Berlin (1981)

    Google Scholar 

  42. Abarbanel, H.D.I.: Analysis of observed chaotic data. Springer, Berlin (1995)

    MATH  Google Scholar 

  43. Schuster, H.-G., Just, W.: Deterministic Chaos: An Introduction. Wiley, Hoboken (1995)

    MATH  Google Scholar 

  44. Strogatz, S.H.: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering. Perseus Book Publishing, New York City (1994)

    MATH  Google Scholar 

  45. Akhmediev, N., Soto-Crespo, J.M., Town, G.: Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: complex Ginzburg–Landau equation approach. Phys. Rev. E 63, 056602 (2001)

    Article  Google Scholar 

  46. Akhmediev, N., Ankiewicz, A. (eds.): Dissipative Solitons: From Optics to Biology and Medicine, Lecture Notes in Physics, vol. 751. Springer, Berlin (2008)

    MATH  Google Scholar 

  47. Grelu, P. (ed.): Nonlinear Optical Cavity Dynamics: From Microresonators to Fiber Lasers. Wiley, Hoboken (2016)

    Google Scholar 

  48. Liu, G., Snoke, D.W., Daley, A., Pfeiffer, L.N., West, K.: A new type of half-quantum circulation in a macroscopic polariton spinor ring condensate. PNAS 112, 2676 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Bruno Eckhardt for interesting discussions. N.V.H. appreciates the hospitality of M.T. during his visit to Warsaw for scientific cooperation. K.B.Z. acknowledges support from the National Science Centre (Poland) through Project FUGA No. 2016/20/S/ST2/00366. J.Z. acknowledges support by PL-Grid Infrastructure and EU Project, the EU H2020-FETPROACT-2014 Project QUIC No. 641122. This research has been also supported by National Science Centre (Poland) under Projects 2016/22/M/ST2/00261 (M.T.) and 2016/21/B/ST2/01086 (J.Z.). N.V.H. was supported by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number 103.01-2017.55.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hung Viet Nguyen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zegadlo, K., Nguyen, H.V., Konotop, V.V. et al. Route to chaos in a coupled microresonator system with gain and loss. Nonlinear Dyn 97, 559–569 (2019). https://doi.org/10.1007/s11071-019-04997-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-04997-5

Keywords

Navigation