Advertisement

A Taylor series-based continuation method for solutions of dynamical systems

  • Louis GuillotEmail author
  • Bruno Cochelin
  • Christophe Vergez
Original Paper
  • 74 Downloads

Abstract

This paper describes a generic Taylor series-based continuation method, the so-called asymptotic numerical method, to compute the bifurcation diagrams of nonlinear systems. The key point of this approach is the quadratic recast of the equations as it allows to treat in the same way a wide range of dynamical systems and their solutions. Implicit differential-algebraic equations, forced or autonomous, possibly with time-delay or fractional-order derivatives are handled in the same framework. The static, periodic and quasi-periodic solutions can be continued and also transient solutions.

Keywords

Nonlinear dynamics Numerical continuation Quadratic recast Asymptotic numerical method Taylor series Dynamical systems 

Notes

Acknowledgements

This work has been carried out in the framework of the Labex MEC (ANR-10-LABX-0092) and of the A*MIDEX project (ANR-11-IDEX-0001-02), funded by the Investissements d’Avenir French Government program managed by the French National Research Agency (ANR).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Barton, D.A., Krauskopf, B., Wilson, R.E.: Collocation schemes for periodic solutions of neutral delay differential equations. J. Differ. Equ. Appl. 12(11), 1087–1101 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bentvelsen, B., Lazarus, A.: Modal and stability analysis of structures in periodic elastic states: application to the ziegler column. Nonlinear Dyn. 91(2), 1349–1370 (2018)CrossRefGoogle Scholar
  3. 3.
    Beyn, W.J., Champneys, A., Doedel, E., Govaerts, W., Kuznetsov, Y.A., Sandstede, B.: Numerical continuation, and computation of normal forms. In: Handbook of Dynamical Systems III: Towards Applications. Citeseer (2001)Google Scholar
  4. 4.
    Boumédiène, F., Miloudi, A., Cadou, J., Duigou, L., Boutyour, E.: Nonlinear forced vibration of damped plates by an asymptotic numerical method. Comput. Struct. 87(23–24), 1508–1515 (2009)CrossRefzbMATHGoogle Scholar
  5. 5.
    Cameron, T., Griffin, J.: An alternating frequency/time domain method for calculating the steady-state response of nonlinear dynamic systems. J. Appl. Mech. 56(1), 149–154 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Charpentier, I., Cochelin, B.: Towards a full higher order ad-based continuation and bifurcation framework. Optim. Methods Softw. (2018)Google Scholar
  7. 7.
    Charpentier, I., Lejeune, A., Potier-Ferry, M.: The diamant approach for an efficient automatic differentiation of the asymptotic numerical method. In: Advances in automatic differentiation, pp. 139–149 (2008)Google Scholar
  8. 8.
    Claude, B., Duigou, L., Girault, G., Cadou, J.M.: Eigensolutions to a vibroacoustic interior coupled problem with a perturbation method. Comptes Rendus Méc. 345(2), 130–136 (2017)CrossRefGoogle Scholar
  9. 9.
    Cochelin, B.: A path-following technique via an asymptotic-numerical method. Comput. Struct. 53(5), 1181–1192 (1994)CrossRefzbMATHGoogle Scholar
  10. 10.
    Cochelin, B., Damil, N., Potier-Ferry, M.: Asymptotic-numerical methods and pade approximants for non-linear elastic structures. Int. J. Numer. Methods Eng. 37(7), 1187–1213 (1994)CrossRefzbMATHGoogle Scholar
  11. 11.
    Cochelin, B., Damil, N., Potier-Ferry, M.: The asymptotic-numerical method: an efficient perturbation technique for nonlinear structural mechanics. Revue européenne des éléments finis 3(2), 281–297 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Cochelin, B., Vergez, C.: A high order purely frequency-based harmonic balance formulation for continuation of periodic solutions. J. Sound Vib. 324(1), 243–262 (2009)CrossRefGoogle Scholar
  13. 13.
    Dhooge, A., Govaerts, W., Kuznetsov, Y.A.: Matcont: a matlab package for numerical bifurcation analysis of odes. ACM Trans. Math. Softw. 29(2), 141–164 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Doedel, E.J.: Auto: a program for the automatic bifurcation analysis of autonomous systems. Congr. Numer. 30, 265–284 (1981)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Doedel, E.J., Govaerts, W., Kuznetsov, Y.A.: Computation of periodic solution bifurcations in odes using bordered systems. SIAM J. Numer. Anal. 41(2), 401–435 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Doedel, E.J., Heinemann, R.F.: Numerical computation of periodic solution branches and oscillatory dynamics of the stirred tank reactor with A yields B yields C reactions. Tech. rep., Wisconsin Univ-Madison Mathematics Research Center (1982)Google Scholar
  17. 17.
    Engelborghs, K., Luzyanina, T., Roose, D.: Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL. ACM Trans. Math. Softw. 28(1), 1–21 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Farner, S., Vergez, C., Kergomard, J., Lizée, A.: Contribution to harmonic balance calculations of self-sustained periodic oscillations with focus on single-reed instruments. J. Acoust. Soc. Am. 119(3), 1794–1804 (2006)CrossRefGoogle Scholar
  19. 19.
    Fontanela, F., Grolet, A., Salles, L., Hoffmann, N.: Computation of quasi-periodic localised vibrations in nonlinear cyclic and symmetric structures using harmonic balance methods. J. Sound Vib. 438, 54–65 (2019)CrossRefGoogle Scholar
  20. 20.
    Fritzsche, K., Grauert, H.: From Holomorphic Functions to Complex Manifolds, vol. 213. Springer, Berlin (2012)zbMATHGoogle Scholar
  21. 21.
    Griewank, A., Walther, A.: Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, vol. 105. SIAM, Philadelphia (2008)CrossRefzbMATHGoogle Scholar
  22. 22.
    Guillot, L., Cochelin, B., Vergez, C.: A generic and efficient taylor series based continuation method using a quadratic recast of smooth nonlinear systems. Int. J. Numer. Methods Eng. 0(ja) (2019).  https://doi.org/10.1002/nme.6049
  23. 23.
    Guillot, L., Vergez, C., Cochelin, B.: Continuation of periodic solutions of various types of delay differential equations using asymptotic numerical method and harmonic balance method. Nonlinear Dyn. (2019).  https://doi.org/10.1007/s11071-019-04958-y
  24. 24.
    Guillot, L., Vigué, P., Vergez, C., Cochelin, B.: Continuation of quasi-periodic solutions with two-frequency harmonic balance method. J. Sound Vib. 394, 434–450 (2017)CrossRefGoogle Scholar
  25. 25.
    Jean, A., Nelson, H.: Periodic response investigation of large order non-linear rotordynamic systems using collocation. J. Sound Vib. 143(3), 473–489 (1990)CrossRefGoogle Scholar
  26. 26.
    Karkar, S., Cochelin, B., Vergez, C.: A comparative study of the harmonic balance method and the orthogonal collocation method on stiff nonlinear systems. J. Sound Vib. 333(12), 2554–2567 (2014)CrossRefGoogle Scholar
  27. 27.
    Keller, H.: Lectures on numerical methods in bifurcation problems. Appl. Math. 217, 50 (1987)Google Scholar
  28. 28.
    Khibnik, A.I., Kuznetsov, Y.A., Levitin, V.V., Nikolaev, E.V.: Continuation techniques and interactive software for bifurcation analysis of odes and iterated maps. Phys. D: Nonlinear Phenom. 62(1–4), 360–371 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Krylov, N.M., Bogoliubov, N.N.: Introduction to Non-linear Mechanics. Princeton University Press (1949 (English translation of Russian edition from 1936)Google Scholar
  30. 30.
    marquis de Laplace, P.S.: Traité de mécanique céleste. Crapelet (1799)Google Scholar
  31. 31.
    Lazarus, A., Thomas, O.: A harmonic-based method for computing the stability of periodic solutions of dynamical systems. Comptes Rendus Méc. 338(9), 510–517 (2010)CrossRefzbMATHGoogle Scholar
  32. 32.
    Leimkuhler, B., Reich, S.: Simulating Hamiltonian Dynamics, vol. 14. Cambridge University Press, Cambridge (2004)zbMATHGoogle Scholar
  33. 33.
    Lévy, L.: Précis élémentaire de la théorie des fonctions elliptiques avec tables numériques et applications. Gauthier-Villars, Paris (1898)zbMATHGoogle Scholar
  34. 34.
    Liao, S.: Beyond Perturbation: Introduction to the Homotopy Analysis Method. Chapman and Hall/CRC, London (2003)CrossRefGoogle Scholar
  35. 35.
    Munoz-Almaraz, F.J., Freire, E., Galán, J., Doedel, E., Vanderbauwhede, A.: Continuation of periodic orbits in conservative and hamiltonian systems. Phys. D: Nonlinear Phenom. 181(1–2), 1–38 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Nakhla, M., Vlach, J.: A piecewise harmonic balance technique for determination of periodic response of nonlinear systems. IEEE Trans. Circuits Syst. 23(2), 85–91 (1976)CrossRefGoogle Scholar
  37. 37.
    Newmark, N.M.: A method of computation for structural dynamics. J. Eng. Mech. Div. 85(3), 67–94 (1959)Google Scholar
  38. 38.
    Peeters, M., Viguié, R., Sérandour, G., Kerschen, G., Golinval, J.C.: Nonlinear normal modes, part II: toward a practical computation using numerical continuation techniques. Mech. Syst. Signal Process. 23(1), 195–216 (2009)CrossRefGoogle Scholar
  39. 39.
    Schilder, F., Osinga, H.M., Vogt, W.: Continuation of quasi-periodic invariant tori. SIAM J. Appl. Dyn. Syst. 4(3), 459–488 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Seydel, R.: From Equilibrium to Chaos: Practical Bifurcation and Stability Analysis. North-Holland, Amsterdam (1988)zbMATHGoogle Scholar
  41. 41.
    Vigué, P.: Solutions périodiques et quasi-périodiques de systèmes dynamiques d’ordre entier ou fractionnaire : applications à la corde frottée. Ph.D. thesis (2017). http://www.theses.fr/2017AIXM0306. Thèse de doctorat dirigée par Vergez, Christophe et Cochelin, Bruno Sciences de l’ingénieur. Acoustique Aix-Marseille 2017
  42. 42.
    Vigué, P., Vergez, C., Lombard, B., Cochelin, B.: Continuation of periodic solutions for systems with fractional derivatives. Nonlinear Dyn. pp. 1–15 (2018)Google Scholar
  43. 43.
    Zhou, B., Thouverez, F., Lenoir, D.: A variable-coefficient harmonic balance method for the prediction of quasi-periodic response in nonlinear systems. Mech. Syst. Signal Process. 64, 233–244 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Aix Marseille Univ, CNRS, Centrale Marseille, LMA UMR7031MarseilleFrance

Personalised recommendations