Advertisement

Nonlinear Dynamics

, Volume 97, Issue 1, pp 123–134 | Cite as

Continuation of periodic solutions of various types of delay differential equations using asymptotic numerical method and harmonic balance method

  • Louis GuillotEmail author
  • Christophe Vergez
  • Bruno Cochelin
Original Paper

Abstract

This article presents an extension of the asymptotic numerical method combined with the harmonic balance method to the continuation of periodic orbits of delay differential equations. The equations can be forced or autonomous and possibly of neutral type. The approach developed in this paper requires the system of equations to be written in a quadratic formalism which is detailed. The method is applied to various systems, from Van der Pol and Duffing oscillators to toy models of clarinet and saxophone. The harmonic balance method is ascertained from a comparison to standards time-integration solvers. Bifurcation diagrams are drawn which are sometimes intricate, showing the robustness of this method.

Keywords

Nonlinear dynamics Delay equations Harmonic balance method Numerical continuation Periodic solutions Quadratic recast Asymptotic numerical method 

Notes

Acknowledgements

The authors want to thank Tom Colinot for the help with the saxophone model and its associated time-integration method. This work has been carried out in the framework of the Labex MEC (ANR-10-LABX-0092) and of the A*MIDEX project (ANR-11-IDEX-0001-02), funded by the Investissements d’Avenir French Government program managed by the French National Research Agency (ANR). Conflict of Interest: The authors declare that they have no conflict of interest.

References

  1. 1.
    Atay, F.M.: Van der Pol’s oscillator under delayed feedback. J. Sound Vib. 218(2), 333–339 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Barton, D.A., Krauskopf, B., Wilson, R.E.: Collocation schemes for periodic solutions of neutral delay differential equations. J. Differ. Equ. Appl. 12(11), 1087–1101 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Charpentier, I., Cochelin, B.: Towards a full higher order AD-based continuation and bifurcation framework. Optim. Methods Softw. 33, 945–962 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cochelin, B.: A path-following technique via an asymptotic-numerical method. Comput. Struct. 53(5), 1181–1192 (1994)CrossRefzbMATHGoogle Scholar
  5. 5.
    Cochelin, B., Damil, N., Potier-Ferry, M.: Asymptotic-numerical methods and pade approximants for non-linear elastic structures. Int. J. Numer. Methods Eng. 37(7), 1187–1213 (1994)CrossRefzbMATHGoogle Scholar
  6. 6.
    Cochelin, B., Damil, N., Potier-Ferry, M.: The asymptotic-numerical method: an efficient perturbation technique for nonlinear structural mechanics. Revue européenne des éléments finis 3(2), 281–297 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cochelin, B., Medale, M.: Power series analysis as a major breakthrough to improve the efficiency of asymptotic numerical method in the vicinity of bifurcations. J. Comput. Phys. 236, 594–607 (2013)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Cochelin, B., Vergez, C.: A high order purely frequency-based harmonic balance formulation for continuation of periodic solutions. J. Sound Vib. 324(1), 243–262 (2009)CrossRefGoogle Scholar
  9. 9.
    Colinot, T., Kergomard, J.: Formulation analytique de la pression interne d’un modèle idéalisé d’instrument conique à anche. In: CFA 2018/VISHNO (2018)Google Scholar
  10. 10.
    Cottanceau, E., Thomas, O., Véron, P., Alochet, M., Deligny, R.: A finite element/quaternion/asymptotic numerical method for the 3D simulation of flexible cables. Finite Elem. Anal. Des. 139, 14–34 (2018)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Dalmont, J.P., Gilbert, J., Kergomard, J.: Reed instruments, from small to large amplitude periodic oscillations and the Helmholtz motion analogy. Acta Acust. United Acust. 86(4), 671–684 (2000)Google Scholar
  12. 12.
    Engelborghs, K., Luzyanina, T., Roose, D.: Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL. ACM Trans. Math. Softw. (TOMS) 28(1), 1–21 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Fourier, J.: Theorie analytique de la chaleur, par M. Fourier. Chez Firmin Didot, père et fils (1822)Google Scholar
  14. 14.
    Griewank, A., Walther, A.: Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, vol. 105. SIAM, Philadelphia (2008)CrossRefzbMATHGoogle Scholar
  15. 15.
    Guillot, L., Cochelin, B., Vergez, C.: A generic and efficient taylor series based continuation method using a quadratic recast of smooth nonlinear systems. Int. J. Numer. Methods Eng. (2019).  https://doi.org/10.1002/nme.6049 Google Scholar
  16. 16.
    Guillot, L., Vigué, P., Vergez, C., Cochelin, B.: Continuation of quasi-periodic solutions with two-frequency harmonic balance method. J. Sound Vib. 394, 434–450 (2017)CrossRefGoogle Scholar
  17. 17.
    Hu, H., Dowell, E.H., Virgin, L.N.: Resonances of a harmonically forced duffing oscillator with time delay state feedback. Nonlinear Dyn. 15(4), 311–327 (1998)CrossRefzbMATHGoogle Scholar
  18. 18.
    Karkar, S., Cochelin, B., Vergez, C.: A high-order, purely frequency based harmonic balance formulation for continuation of periodic solutions: the case of non-polynomial nonlinearities. J. Sound Vib. 332(4), 968–977 (2013)CrossRefGoogle Scholar
  19. 19.
    Kergomard, J., Guillemain, P., Silva, F., Karkar, S.: Idealized digital models for conical reed instruments, with focus on the internal pressure waveform. J. Acoust. Soc. Am. 139(2), 927–937 (2016)CrossRefGoogle Scholar
  20. 20.
    Krylov, N.M., Bogoliubov, N.N.: Introduction to Non-linear Mechanics. Princeton University Press, Princeton (1949)zbMATHGoogle Scholar
  21. 21.
    Liu, L., Kalmár-Nagy, T.: High-dimensional harmonic balance analysis for second-order delay-differential equations. J. Vib. Control 16(7–8), 1189–1208 (2010)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Nakhla, M., Vlach, J.: A piecewise harmonic balance technique for determination of periodic response of nonlinear systems. IEEE Trans. Circuits Syst. 23(2), 85–91 (1976)CrossRefGoogle Scholar
  23. 23.
    Seydel, R.: From Equilibrium to Chaos: Practical Bifurcation and Stability Analysis. North-Holland, Amsterdam (1988)zbMATHGoogle Scholar
  24. 24.
    Shampine, L.F.: Dissipative approximations to neutral DDEs. Appl. Math. Comput. 203(2), 641–648 (2008)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Shampine, L.F., Thompson, S.: Solving DDEs in Matlab. Appl. Numer. Math. 37(4), 441–458 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Taillard, P.A., Kergomard, J., Laloë, F.: Iterated maps for clarinet-like systems. Nonlinear Dyn. 62(1–2), 253–271 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Vigué, P., Vergez, C., Karkar, S., Cochelin, B.: Regularized friction and continuation: comparison with Coulomb’s law. J. Sound Vib. 389, 350–363 (2017)CrossRefGoogle Scholar
  28. 28.
    Vigué, P., Vergez, C., Lombard, B., Cochelin, B.: Continuation of periodic solutions for systems with fractional derivatives. Nonlinear Dyn. 95, 1–15 (2018)Google Scholar
  29. 29.
    Zahrouni, H., Cochelin, B., Potier-Ferry, M.: Computing finite rotations of shells by an asymptotic-numerical method. Comput. Methods Appl. Mech. Eng. 175(1–2), 71–85 (1999)CrossRefzbMATHGoogle Scholar
  30. 30.
    Zahrouni, H., Potier-Ferry, M., Elasmar, H., Damil, N.: Asymptotic numerical method for nonlinear constitutive laws. Revue européenne des éléments finis 7(7), 841–869 (1998)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Aix Marseille Univ, CNRS, Centrale Marseille, Laboratoire de Mécanique et d’Acoustique UMR 7031MarseilleFrance

Personalised recommendations