Skip to main content
Log in

Multivariate multiscale complexity-entropy causality plane analysis for complex time series

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The multivariate multiscale complexity-entropy causality plane (MMCECP) is introduced for evaluating the dynamical complexity and long-range correlations of multivariate nonlinear systems. Numerical simulations from different classes of systems are applied to confirm the effectiveness of the proposed measure. We observe that the MMCECP not only can characterize the deterministic properties of the systems, but also can distinguish Gaussian and non-Gaussian processes. Moreover, it is immune to varying degrees of noises at large scales. Then we apply it to financial time series analysis, mainly investigating the classification of stock market dynamics. Empirical results illustrate that the MMCECP is robust and valid to detect the physical structures of stock markets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Okaly, J.B., Mvogo, A., Woulache, R.L., Kofane, T.C.: Nonlinear dynamics of damped dna systems with long-range interactions. Commun. Nonlinear Sci. Numer. Simul. 55, 183–193 (2017)

    Article  MathSciNet  Google Scholar 

  2. Kolmogorov, A.N.: Three approaches to the quantitative definition of information. Probl. Inf. Transm. 1(1), 1–7 (1965)

    MathSciNet  Google Scholar 

  3. Mandelbrot, B.B., Wheeler, J.A.: The fractal geometry of nature. J. R. Stat. Soc. 147(4), 468 (1983)

    Google Scholar 

  4. Lyapunov, A.M.: The general problem of the stability of motion. Int. J. Control 31(3), 353–354 (1994)

    MathSciNet  Google Scholar 

  5. Shannon, C.E.: A mathematical theory of communication. ACM Sigmob. Mob. Comput. Commun. Rev. 5(3), 379–423 (1948)

    MathSciNet  MATH  Google Scholar 

  6. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22(1), 79–86 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  7. Pincus, S.: Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA 88(6), 2297–2301 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Richman, J.S., Moorman, J.R.: Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 278(6), H2039 (2000)

    Article  Google Scholar 

  9. Bandt, C., Pompe, B.: Permutation entropy: a natural complexity measure for time series. Phys. Rev. 88(17), 174102 (2002)

    Google Scholar 

  10. Zhang, Y., Shang, P.: Permutation entropy analysis of financial time series based on hills diversity number. Commun. Nonlinear Sci. Numer. Simul. 6(1), 1659–1671 (2017)

    MathSciNet  Google Scholar 

  11. Zhao, X., Shang, P., Huang, J.: Permutation complexity and dependence measures of time series. EPL 102(4), 40005 (2013)

    Article  Google Scholar 

  12. Yin, Y., Shang, P.: Weighted multiscale permutation entropy of financial time series. Nonlinear Dyn. 78(4), 2921–2939 (2014)

    Article  MathSciNet  Google Scholar 

  13. Lopezruiz, R., Mancini, H.L., Calbet, X.: A statistical measure of complexity. Phys. Lett. A 209(5), 321–326 (2010)

    Google Scholar 

  14. Martin, M.T., Plastino, A.R., Rosso, O.A.: Statistical complexity and disequilibrium. Phys. Lett. A 311(2), 126–132 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lamberti, P.W., Martin, M.T., Plastino, A., Rosso, O.A.: Intensive entropic non-triviality measure. Phys. A Stat. Mech. Appl. 334(1), 119–131 (2004)

    Article  MathSciNet  Google Scholar 

  16. Rosso, O.A., Larrondo, H.A., Martin, M.T., Plastino, A., Fuentes, M.A.: Distinguishing noise from chaos. Phys. Rev. Lett. 99(15), 154102 (2007)

    Article  Google Scholar 

  17. Rosso, O.A., Zunino, L., Perez, D.G., Figliola, A., Larrondo, H.A., Garavaglia, M., Martin, M.T., Plastino, A.: Extracting features of gaussian self-similar stochastic processes via the Bandt–Pompe approach. Phys. Rev. E 76(6), 061114 (2007)

    Article  Google Scholar 

  18. Weck, P.J., Schaffner, D.A., Brown, M.R., Wicks, R.T.: Permutation entropy and statistical complexity analysis of turbulence in laboratory plasmas and the solar wind. Phys. Rev. E 91(2), 023101 (2015)

    Article  Google Scholar 

  19. Zunino, L., Zanin, M., Tabak, B.M., Perez, D.G., Rosso, O.A.: Complexity-entropy causality plane: a useful approach to quantify the stock market inefficiency. Phys. A Stat. Mech. Appl. 389(9), 1891–1901 (2010)

    Article  Google Scholar 

  20. Rosso, O.A., Olivares, F., Zunino, L., De Micco, L., Andre, L.L., Plastino, A., Larrondo, H.A.: Characterization of chaotic maps using the permutation Bandt–Pompe probability distribution. Eur. Phys. J. B 86(4), 116 (2013)

    Article  Google Scholar 

  21. Siddagangaiah, S., Li, Y., Guo, X., Chen, X., Zhang, Q., Yang, K., Yang, Y.: A complexity-based approach for the detection of weak signals in ocean ambient noise. Entropy 18(3), 101 (2016)

    Article  Google Scholar 

  22. Ribeiro, H.V., Jauregui, M., Zunino, L., Lenzi, E.K.: Characterizing time series via complexity-entropy curves. Phys. Rev. E 95(6–1), 062106 (2017)

    Article  MathSciNet  Google Scholar 

  23. Zunino, L., Tabak, B.M., Serinaldi, F., Zanin, M., Perez, D.G., Rosso, O.A.: Commodity predictability analysis with a permutation information theory approach. Phys. A Stat. Mech. Appl. 390(5), 876–890 (2011)

    Article  Google Scholar 

  24. Ribeiro, H.V., Zunino, L., Mendes, R.S., Lenzi, E.K.: Complexity-entropy causality plane: a useful approach for distinguishing songs. Phys. A Stat. Mech. Appl. 391(7), 2421–2428 (2012)

    Article  Google Scholar 

  25. Morabito, F.C., Labate, D., La Foresta, F., Bramanti, A., Morabito, G., Palamara, I.: Multivariate multi-scale permutation entropy for complexity analysis of alzheimers disease eeg. Entropy 14(7), 1186–1202 (2012)

    Article  MATH  Google Scholar 

  26. He, S., Sun, K., Wang, H.: Multivariate permutation entropy and its application for complexity analysis of chaotic systems. Phys. A Stat. Mech. Appl. 461, 812–823 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yin, Y., Shang, P.: Multivariate weighted multiscale permutation entropy for complex time series. Nonlinear Dyn. 88(3), 1707–1722 (2017)

    Article  MathSciNet  Google Scholar 

  28. Grassberger, P.: Toward a quantitative theory of self-generated complexity. Int. J. Theor. Phys. 25(9), 907–938 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  29. Feldman, D.P., Mctague, C.S., Crutchfield, J.P.: The organization of intrinsic computation: complexity-entropy diagrams and the diversity of natural information processing. Chaos 18(4), 148–201 (2008)

    Article  MathSciNet  Google Scholar 

  30. Staniek, M., Lehnertz, K.: Parameter selection for permutation entropy measurements. Int. J. Bifurc. Chaos 17(10), 3729–3733 (2011)

    Article  MATH  Google Scholar 

  31. Costa, M., Goldberger, A.L., Peng, C.K.: Multiscale entropy analysis of complex physiologic time series. Phys. Rev. Lett. 89(6), 068102 (2002)

    Article  Google Scholar 

  32. Plastino, A.R., Plastino, A.: Symmetries of the Fokker–Planck equation and the Fisher–Frieden arrow of time. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 54(4), 4423 (1996)

    Google Scholar 

  33. Martin, M.T., Plastino, A., Rosso, O.A.: Generalized statistical complexity measures: geometrical and analytical properties. Phys. A Stat. Mech. Appl. 369(2), 439–462 (2012)

    Article  Google Scholar 

  34. Hénon, M.: A two-dimensional mapping with a strange attractor. Commun. Math. Phys. 50(1), 94–102 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  35. Whitehead, R.R., Macdonald, N.: A chaotic mapping that displays its own homoclinic structure. Phys. D Nonlinear Phenom. 13(3), 401–407 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  36. Devaney, R.L.: A piecewise linear model for the zones of instability of an area-preserving map. Phys. D Nonlinear Phenom. 10(3), 387–393 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130–141 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  38. Rössler, O.E.: An equation for continuous chaos. Phys. Lett. B 57(5), 397–398 (1976)

    Article  MATH  Google Scholar 

  39. Chen, G., Ueta, T.: Yet another chaotic attractor. Int. J. Bifurc. Chaos 09(07), 1465–1466 (2011)

    Article  MATH  Google Scholar 

  40. Tang, Y., Zhao, A., Ren, Y.Y., Dou, F.X., De Jin, N.: Gasliquid two-phase flow structure in the multi-scale weighted complexity entropy causality plane. Phys. A Stat. Mech. Appl. 449, 324–335 (2016)

    Article  Google Scholar 

  41. Stratimirovic, D., Sarvan, D., Miljkovic, V., Blesic, S.: Analysis of cyclical behavior in time series of stock market returns. Commun. Nonlinear Sci. Numer. Simul. 54, 21–33 (2018)

    Article  MathSciNet  Google Scholar 

  42. Schmitt, T.A., Chetalova, D., Schafer, R., Guhr, T.: Non-stationarity in financial time series: generic features and tail behavior. Europhys. Lett. 103(103), 58003 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The financial supports from the funds of the Fundamental Research Funds for the Central Universities (2019YJS205, 2018JBZ104), the China National Science (61771035) and the Beijing National Science (4162047) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuegeng Mao.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest concerning the publication of this manuscript. Name: Xuegeng Mao

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, X., Shang, P. & Li, Q. Multivariate multiscale complexity-entropy causality plane analysis for complex time series. Nonlinear Dyn 96, 2449–2462 (2019). https://doi.org/10.1007/s11071-019-04933-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-04933-7

Keywords

Navigation