Evolution of space tethered system’s orbit during space debris towing taking into account the atmosphere influence


Space debris removal by a low thrust tethered spacecraft is considered in this paper. The objective of the work is the development of a simplified mathematical model describing the perturbed motion of the space tethered system under the influence of the aerodynamic drag forces and low thrust of the spacecraft’s engines and study the evolution of the space tethered system’s center of mass orbital parameters on large time intervals. The mathematical model describing the plane motion of a space tethered system with inextensible massless tether is constructed. Linearization and averaging of the mathematical model over the angle of the tether deflection are carried out. Separation of fast and slow variables is performed using Van der Pol approach. The obtained system is averaged over a fast variable. It is used to study the evolution of the center of mass orbit during space debris removal. The effect of the space tethered system attitude motion on the center of mass motion is analyzed. It is concluded that the greatest influence of the relative motion is observed in the case when the tether oscillates near the local vertical so that the space tug is located above the space debris.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    Bonnal, C., Ruault, J.M., Desjean, M.C.: Active debris removal: recent progress and current trends. Acta Astron. 85, 51–60 (2013)

    Article  Google Scholar 

  2. 2.

    Shan, M., Guo, J., Gill, E.: Review and comparison of active space debris capturing and removal methods. Prog. Aerosp. Sci. 80, 18–32 (2016)

    Article  Google Scholar 

  3. 3.

    Hakima, H., Emami, M.R.: Assessment of active methods for removal of LEO debris. Acta Astron. 144, 225–243 (2018)

    Article  Google Scholar 

  4. 4.

    Botta, E.M., Sharf, I., Misra, A.K.: Contact dynamics modeling and simulation of tether nets for space-debris capture. J. Guid. Control Dyn. 40(1), 110–123 (2017)

    Article  Google Scholar 

  5. 5.

    Dudziak, R., Tuttle, S., Barraclough, S.: Harpoon technology development for the active removal of space debris. Adv. Space Res. 56(3), 509–527 (2015)

    Article  Google Scholar 

  6. 6.

    Trushlyakov, V.I., Yudintsev, V.V., Pikalov, R.S.: Dynamic control of tug-debris tethered system after the capturing of the debris. J. Phys. Conf. Ser. 1050(1), 012092 (2018)

    Article  Google Scholar 

  7. 7.

    Jaworski, P., Lappas, V., Tsourdos, A., Gray, I., Schaub, H.: Debris rotation analysis during tethered towing for active debris removal. J. Guid. Control Dyn. 40(7), 1769–1778 (2017)

    Article  Google Scholar 

  8. 8.

    Aslanov, V.S., Misra, A.K., Yudintsev, V.V.: Chaotic attitude motion of a low-thrust tug-debris tethered system in a Keplerian orbit. Acta Astron. 139, 419–427 (2017)

    Article  Google Scholar 

  9. 9.

    Aslanov, V.S., Ledkov, A.S.: Dynamics of towed large space debris taking into account atmospheric disturbance. Acta Mech. 225(9), 2685–2697 (2014)

    Article  MATH  Google Scholar 

  10. 10.

    Jasper, L., Schaub, H.: Tethered towing using open-loop input-shaping and discrete thrust levels. Acta Astron. 105(1), 373–384 (2014)

    Article  Google Scholar 

  11. 11.

    Beletskii, V.V., Levin, E.M.: Dynamics of Space Tether Systems, vol. 83. Univelt Incorporated, San Diego (1993)

    Google Scholar 

  12. 12.

    Cartmell, M.P., McKenzie, D.J.: A review of space tether research. Prog. Aerosp. Sci. 44(1), 1–21 (2008)

    Article  Google Scholar 

  13. 13.

    Williams, P.: A review of space tether technology. Recent Pat. Space Technol. 2(1), 22–36 (2012)

    Article  Google Scholar 

  14. 14.

    Krupa, M., Poth, W., Schagerl, M., Steindl, A., Steiner, W., Troger, H., Wiedermann, G.: Modelling, dynamics and control of tethered satellite systems. Nonlinear Dyn. 43(1–2), 73–96 (2006)

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    Zhuk, V.I., Shakhov, E.M.: On oscillations of tethered satellite of small mass caused by aerodynamical drag and gravity. Cosm. Res. 28(6), 820–830 (1990)

    Google Scholar 

  16. 16.

    Kokubun, K.: Resonated libration of tethered subsatellite by atmospheric density variation. J. Guid. Control Dyn. 22(6), 910–911 (1999)

    Article  Google Scholar 

  17. 17.

    Onoda, J., Watanabe, N.: Tethered subsatellite swinging from atmospheric gradients. J. Guid. Control Dyn. 11(5), 477–479 (1988)

    Article  Google Scholar 

  18. 18.

    Beletskii, V.V., Levin, E.M.: Dynamics of the orbital cable system. Acta Astron. 12(5), 285–291 (1985)

    Article  Google Scholar 

  19. 19.

    Aslanov, V.S., Ledkov, A.S., Misra, A.K., Guerman, A.D.: Dynamics of space elevator after tether rupture. J. Guid. Control Dyn. 36(4), 986–992 (2013)

    Article  Google Scholar 

  20. 20.

    Pasca, M., Lorenzini, E.C.: Two analytical models for the analysis of a tethered satellite system in atmosphere. Meccanica 32(4), 263–277 (1997)

    MathSciNet  Article  MATH  Google Scholar 

  21. 21.

    Jaslow, H.: Aerodynamic relationships inherent in Newtonian impact theory. AIAA J. 6(4), 608–612 (1968)

    Article  Google Scholar 

  22. 22.

    Picone, J.M., Hedin, A.E., Drob, D.P., Aikin, A.C.: NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues. J. Geophys. Res. 107(A12), SIA 15-1–SIA 15-16 (2002)

    Article  Google Scholar 

  23. 23.

    Korn, G., Korn, T.: Mathematical Handbook. McGraw-Hill Book Company, New York (1968)

    Google Scholar 

  24. 24.

    Aslanov, V.S., Ledkov, A.S.: Dynamics of Tethered Satellite Systems. Woodhead Publishing, Cambridge (2012)

    Google Scholar 

  25. 25.

    Troger, H., Alpatov, A.P., Beletsky, V.V., Dranovskii, V.I., Khoroshilov, V.S., Pirozhenko, A.V., Zakrzhevskii, A.E.: Dynamics of Tethered Space Systems. CRC Press, New York (2010)

    Google Scholar 

Download references


This study was supported by the Russian Science Foundation (Project No. 19-19-00085).

Author information



Corresponding author

Correspondence to Alexander Ledkov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ledkov, A., Aslanov, V. Evolution of space tethered system’s orbit during space debris towing taking into account the atmosphere influence. Nonlinear Dyn 96, 2211–2223 (2019). https://doi.org/10.1007/s11071-019-04918-6

Download citation


  • Space debris
  • Space tether
  • Orbit evolution
  • Low thrust
  • Averaged equations