Skip to main content
Log in

Impact of mixed measurements in detecting phase synchronization in networks using multivariate singular spectrum analysis

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Multivariate singular spectrum analysis (M-SSA) is a useful tool to detect phase synchronization (PS) without any a priori need for phase estimation. The discriminatory power of M-SSA is often enhanced by using only the time series of the variable that provides the best observability of the dynamics. In the case of a network, however, diverse factors could prevent access to this variable at some nodes. Hence, other variables should be used instead, resulting in a mixed set of variables. The aim of the present work is to investigate, in a systematic way, the impact of using a mixed/incomplete measurement set in the M-SSA of chains of Rössler systems and cord oscillators. Results show that (i) the measurement of some variable from all  oscillators does not  guarantee detection of PS; (ii) typically one good observable per cluster should be recorded in order to detect PS among such clusters and that (iii) dropping poor variables does not reveal new PS transitions but improves on the resolution of what was already seen with such variables. The procedure is robust to noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Stankovski, T., Pereira, T., McClintock, P.V., Stefanovska, A.: Coupling functions: universal insights into dynamical interaction mechanisms. Rev. Mod. Phys. 89(4), 045001 (2017). https://doi.org/10.1103/RevModPhys.89.045001

    Article  MathSciNet  Google Scholar 

  2. Osipov, G.V., Kurths, J., Zhou, C.: Synchronization in oscillatory networks. Springer series in synergetics, 1st edn. Springer, Berlin (2007). https://doi.org/10.1007/978-3-540-71269-5

    Book  MATH  Google Scholar 

  3. Boccaletti, S., Kurths, J., Osipov, G., Valladares, D., Zhou, C.: The synchronization of chaotic systems. Phys. Rep. 366, 1–101 (2002). https://doi.org/10.1016/S0370-1573(02)00137-0

    Article  MathSciNet  MATH  Google Scholar 

  4. Mineeja, K.K., Ignatius, R.P.: Spatiotemporal activities of a pulse-coupled biological neural network. Nonlinear Dyn. 92(4), 1881–1897 (2018). https://doi.org/10.1007/s11071-018-4169-2

    Article  Google Scholar 

  5. Aguirre, L.A., Freitas, L.: Control and observability aspects of phase synchronization. Nonlinear Dyn. 91(4), 1–15 (2017). https://doi.org/10.1007/s11071-017-4009-9

    Article  Google Scholar 

  6. Huo, J., Wu, H., Sun, W., Zhang, Z., Wang, L., Dong, J.: Electromechanical coupling dynamics of TBM main drive system. Nonlinear Dyn. 90(4), 2687–2710 (2017). https://doi.org/10.1007/s11071-017-3831-4

    Article  Google Scholar 

  7. Thottil, S.K., Ignatius, R.P.: Nonlinear feedback coupling in HindmarshRose neurons. Nonlinear Dyn. 87(3), 1879–1899 (2017). https://doi.org/10.1007/s11071-016-3160-z

    Article  Google Scholar 

  8. Vasegh, N.: Spatiotemporal and synchronous chaos in accumulated coupled map lattice. Nonlinear Dyn. 89(2), 1089–1097 (2017). https://doi.org/10.1007/s11071-017-3501-6

    Article  MATH  Google Scholar 

  9. Wu, W.S., Zhao, Z.S., Zhang, J., Sun, L.K.: State feedback synchronization control of coronary artery chaos system with interval time-varying delay. Nonlinear Dyn. 87(3), 1773–1783 (2017). https://doi.org/10.1007/s11071-016-3151-0

    Article  MATH  Google Scholar 

  10. Rosenblum, M.G., Pikovsky, A., Kurths, J.: Phase synchronization in driven and coupled chaotic oscillators. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 44(10), 874–881 (1997). https://doi.org/10.1109/81.633876

    Article  MathSciNet  MATH  Google Scholar 

  11. Rosenblum, M.G., Pikovsky, A.S., Kurths, J.: Phase synchronization of chaotic oscillators. Phys. Rev. Lett. 76(11), 1804–1807 (1996). https://doi.org/10.1103/PhysRevLett.76.1804

    Article  MATH  Google Scholar 

  12. Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  13. Freitas, L., Torres, L.A.B., Aguirre, L.A.: Phase definition to assess synchronization quality of nonlinear oscillators. Phys. Rev. E 97(5), 052202 (2018). https://doi.org/10.1103/PhysRevE.97.052202

    Article  Google Scholar 

  14. Groth, A., Ghil, M.: Multivariate singular spectrum analysis and the road to phase synchronization. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 84(3), 1–12 (2011). https://doi.org/10.1103/PhysRevE.84.036206

    Article  Google Scholar 

  15. Alessio, S.M.: Digital Signal Processing and Spectral Analysis for Scientists. Signals and Communication Technology. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-25468-5

    Book  MATH  Google Scholar 

  16. Ghil, M., Allen, M.R., Dettinger, M.D., Ide, K., Kondrashov, D., Mann, M.E., Robertson, aW, Saunders, a, Tian, Y., Varadi, F., Yiou, P.: Advanced spectral methods for climate time series. Rev. Geophys. 40(1), 3.1–3.41 (2002). https://doi.org/10.1029/2001RG000092

    Article  Google Scholar 

  17. Plaut, G., Vautard, R.: Spells of low-frequency oscillations and weather regimes in the northern hemisphere. J. Atmos. Sci. 51(2), 210–236 (1994). https://doi.org/10.1175/1520-0469(1994)051

    Article  MathSciNet  Google Scholar 

  18. Vautard, R., Yiou, P., Ghil, M.: Singular-spectrum analysis: a toolkit for short, noisy chaotic signals. Phys. D Nonlinear Phenom. 58, 95–126 (1992). https://doi.org/10.1016/0167-2789(92)90103-T

    Article  Google Scholar 

  19. Broomhead, D., King, G.P.: Extracting qualitative dynamics from experimental data. Phys. D Nonlinear Phenom. 20(2–3), 217–236 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  20. Broomhead, D., King, G.P.: On the qualitative analysis of experimental dynamical systems. In: Sarkar, S. (ed.) Nonlinear Phenom. Chaos, pp. 113–144. Adam Hilger, Bristol (1986)

    Google Scholar 

  21. Portes, L.L., Aguirre, L.A.: Enhancing multivariate singular spectrum analysis for phase synchronization: the role of observability. Chaos Interdiscip. J. Nonlinear Sci. 26(9), 093112 (2016). https://doi.org/10.1063/1.4963013

    Article  MathSciNet  Google Scholar 

  22. Whitney, H.: Differentiable manifolds. Ann. Math. 37(3), 645 (1936). https://doi.org/10.2307/1968482

    Article  MathSciNet  MATH  Google Scholar 

  23. Letellier, C., Maquet, J., Sceller, L.L., Gouesbet, G., Aguirre, L.A.: On the non-equivalence of observables in phase-space reconstructions from recorded time series. J. Phys. A Math. Gen. 31(39), 7913–7927 (1998). https://doi.org/10.1088/0305-4470/31/39/008

    Article  MATH  Google Scholar 

  24. Letellier, C., Aguirre, L.A., Maquet, J.: Relation between observability and differential embeddings for nonlinear dynamics. Phys. Rev. E 71(6), 066213 (2005). https://doi.org/10.1103/PhysRevE.71.066213

    Article  MathSciNet  Google Scholar 

  25. Carroll, T.L.: Testing dynamical system variables for reconstruction. Chaos Interdiscip. J. Nonlinear Sci. 28(10), 103117 (2018). https://doi.org/10.1063/1.5049903

    Article  MathSciNet  MATH  Google Scholar 

  26. Portes, L.L., Benda, R.N., Ugrinowitsch, H., Aguirre, L.A.: Impact of the recorded variable on recurrence quantification analysis of flows. Phys. Lett. A 378(32–33), 2382–2388 (2014). https://doi.org/10.1016/j.physleta.2014.06.014

    Article  MathSciNet  MATH  Google Scholar 

  27. Letellier, C.: Estimating the shannon entropy: recurrence plots versus symbolic dynamics. Phys. Rev. Lett. 96(25), 254102 (2006). https://doi.org/10.1103/PhysRevLett.96.254102

    Article  Google Scholar 

  28. Hindmarsh, J., Rose, R.: A model of neuronal bursting using three coupled first order differential equations. Proc. R. Soc. Lond. B Biol. Sci. 221(1222), 87–102 (1984)

    Article  Google Scholar 

  29. Groth, A., Ghil, M.: Synchronization of world economic activity. Chaos Interdiscip. J. Nonlinear Sci. 27(12), 127002 (2017). https://doi.org/10.1063/1.5001820

    Article  MathSciNet  Google Scholar 

  30. Groth, A., Ghil, M.: Monte Carlo singular spectrum analysis (SSA) revisited: detecting oscillator clusters in multivariate datasets. J. Clim. 28(19), 7873–7893 (2015). https://doi.org/10.1175/JCLI-D-15-0100.1

    Article  Google Scholar 

  31. Feliks, Y., Groth, A., Robertson, A.W., Ghil, M.: Oscillatory climate modes in the Indian Monsoon, North Atlantic, and Tropical Pacific. J. Clim. 26(23), 9528–9544 (2013). https://doi.org/10.1175/JCLI-D-13-00105.1

    Article  Google Scholar 

  32. Aguirre, L.A., Letellier, C.: Investigating observability properties from data in nonlinear dynamics. Phys. Rev. E 83(6), 066209 (2011). https://doi.org/10.1103/PhysRevE.83.066209

    Article  Google Scholar 

  33. Aguirre, L.A., Portes, L.L., Letellier, C.: Structural, dynamical and symbolic observability: from dynamical systems to networks. PLOS ONE 13(10), e0206180 (2018). https://doi.org/10.1371/journal.pone.0206180

    Article  Google Scholar 

  34. Isidori, A.: Nonlinear Control Systems. Communications and Control Engineering. Springer, London (1995). https://doi.org/10.1007/978-1-84628-615-5

    Book  MATH  Google Scholar 

  35. Hermann, R., Krener, A.: Nonlinear controllability and observability. IEEE Trans. Autom. Control 22(5), 728–740 (1977). https://doi.org/10.1109/TAC.1977.1101601

    Article  MathSciNet  MATH  Google Scholar 

  36. Fraedrich, K.: Estimating the dimensions of weather and climate attractors. J. Atmos. Sci. 43(5), 419–432 (1986). https://doi.org/10.1175/1520-0469(1986)043

    Article  MathSciNet  Google Scholar 

  37. Takens, F.: Detecting Strange Attractors in Turbulence. In: Rand, D., Young, L.S. (eds.) Dynamical Systems and Turbulence, Warwick 1980. Springer, Berlin (1981). https://doi.org/10.1007/BFb0091924

    Chapter  Google Scholar 

  38. Golyandina, N., Nekrutkin, V., Zhigljavsky, A.: Analysis of Time Series Structure. C&H/CRC Monographs on Statistics & Applied Probability, vol. 90. Chapman and Hall/CRC, Boca Raton (2001). https://doi.org/10.1201/9781420035841

    Book  MATH  Google Scholar 

  39. Elsner, J.B., Tsonis, A.A.: Singular Spectrum Analysis. Springer, Boston (1996). https://doi.org/10.1007/978-1-4757-2514-8

    Book  Google Scholar 

  40. Vautard, R., Ghil, M.: Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series. Phys. D Nonlinear Phenom. 35(3), 395–424 (1989). https://doi.org/10.1016/0167-2789(89)90077-8

    Article  MathSciNet  MATH  Google Scholar 

  41. Portes, L.L., Aguirre, L.A.: Matrix formulation and singular-value decomposition algorithm for structured varimax rotation in multivariate singular spectrum analysis. Phys. Rev. E 93(5), 052216 (2016). https://doi.org/10.1103/PhysRevE.93.052216

    Article  Google Scholar 

  42. Osipov, G., Pikovsky, A.S., Rosenblum, M.G., Kurths, J.: Phase synchronization effects in a lattice of nonidentical Rössler oscillators. Phys. Rev. E 55(3), 2353–2361 (1997)

    Article  MathSciNet  Google Scholar 

  43. Ibañez, C.A.: Algebraic approach for the reconstruction of rossler system from the \(x(3)\)-variable. Revista Mexicana de Física 52(1), 64–69 (2006)

    MathSciNet  MATH  Google Scholar 

  44. Bickel, P.J., Doksum, K.A.: An analysis of transformations revisited. J. Am. Stat. Assoc. 76(374), 296–311 (1981). https://doi.org/10.1080/01621459.1981.10477649

    Article  MathSciNet  MATH  Google Scholar 

  45. Box, G.E.P., Cox, D.R.: An analysis of transformations. J. R. Stat. Soc. 26(2), 211–252 (1964)

    MATH  Google Scholar 

Download references

Acknowledgements

We thank Dr. Paul Castle for helpful discussions

Funding

This study was funded by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq–Brazil, Grant Numbers 302079/2011-4 and 502036/2014-1), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, grant number 3200 1010 015 P8) and Australian Research Council Discovery Grant (DP 180100718).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo L. Portes.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Portes, L.L., Aguirre, L.A. Impact of mixed measurements in detecting phase synchronization in networks using multivariate singular spectrum analysis. Nonlinear Dyn 96, 2197–2209 (2019). https://doi.org/10.1007/s11071-019-04917-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-04917-7

Keywords

Navigation