Skip to main content
Log in

Effects of coupling strength and network topology on signal detection in small-world neuronal networks

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We study the effects of different coupling strengths and network topologies on signal detection in small-world neuronal networks. Research has previously revealed that the ability of detecting subthreshold signals could be significantly enhanced by appropriately fine-tuning the noise intensity. Here we show that the coupling strength and the structure of the underlying network can also lead toward enhanced signal detection. In particular, we show that there are two levels of the coupling strength at which the subthreshold signal can be detected at an appropriate noise intensity and network structure. We also show that the network structure has little impact on signal detection if the coupling is weak. On the other hand, for intermediate coupling strengths, we show that the shorter the average path length, the better the signal detection. Finally, if the coupling is strong, we show that there exists an intermediate average path length at which signal detection becomes optimal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Notation: A small-world network topology is applied in this paper. In order to satisfy the statistic characteristics of small-world network topology, the network size should be not too small. Usually, the network size should be larger than 100. Thus, we choose N be 200 in this paper. And for different network size N, we need to modulate value of k to keep the obtained results be preserved.

References

  1. Collins, J.J., Chow, C.C., Imhoff, T.T.: Stochastic resonance without tuning. Nature 376, 236–238 (1995)

    Article  Google Scholar 

  2. Benzi, R., Parisi, G., Sutera, A., Vulpiani, A.: Stochastic resonance in climatic change. Tellus 34, 10–16 (1982)

    Article  MATH  Google Scholar 

  3. Benzi, R., Sutera, A., Vulpiani, A.: The mechanism of stochastic resonance. J. Phys. A Math. Gen. 14, L453 (1999)

    Article  MathSciNet  Google Scholar 

  4. Wiesenfeld, K., Moss, F.: Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs. Nature 373, 33–36 (1995)

    Article  Google Scholar 

  5. Gammaitoni, L.: Stochastic resonance. Rev. Mod. Phys. 70, 45–105 (1998)

    Article  Google Scholar 

  6. Yilmaz, E., Uzuntarla, M., Ozer, M., Perc, M.: Stochastic resonance in hybrid scale-free neuronal networks. Physica A 392, 5735–5741 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Pikovsky, A.S., Kurths, J.: Coherence resonance in a noise-driven excitable system. Phys. Rev. Lett. 78, 775–778 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Giacomelli, G., Giudici, M., Balle, S., Tredicce, J.R.: Experimental evidence of coherence resonance in an optical system. Phys. Rev. Lett. 84, 3298 (2000)

    Article  Google Scholar 

  9. Lee, S.G., Neiman, A., Kim, S.: Coherence resonance in a Hodgkin–Huxley neuron. Phys. Rev. E 57, 3292–3297 (1998)

    Article  Google Scholar 

  10. Vilar, J.M.G., Rubí, J.M.: Stochastic multiresonance. Phys. Rev. Lett. 78, 2882–2885 (1997)

    Article  Google Scholar 

  11. Hessler, N.A., Shirke, A.M., Malinow, R.: The probability of transmitter release at a mammalian central synapse. Nature 366, 569 (1993)

    Article  Google Scholar 

  12. Mcdonnell, M.D., Ward, L.M.: The benefits of noise in neural systems: bridging theory and experiment. Nat. Rev. Neurosci. 12, 415–426 (2011)

    Article  Google Scholar 

  13. Faisal, A.A., Selen, L.P.J., Wolpert, D.M.: Noise in the nervous system. Nat. Rev. Neurosci. 9, 292–303 (2008)

    Article  Google Scholar 

  14. Faure, P., Korn, H.: A nonrandom dynamic component in the synaptic noise of a central neuron. Proc. Natl. Acad. Sci. USA 94, 6506 (1997)

    Article  Google Scholar 

  15. Jacobson, G.A., Diba, K., Yaronjakoubovitch, A., Oz, Y., Koch, C., Segev, I., Yarom, Y.: Subthreshold voltage noise of rat neocortical pyramidal neurones. J. Physiol. 564, 145–160 (2005)

    Article  Google Scholar 

  16. Wang, Q.Y., Zhang, H.Z., Perc, M., Chen, G.R.: Multiple firing coherence resonances in excitatory and inhibitory coupled neurons. Commun. Nonlinear Sci. 17, 3979–3988 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chen, Y.L., Yu, L.C., Chen, Y.: Reliability of weak signals detection in neurons with noise. Sci. China Technol. Sci. 59, 1–7 (2016)

    Google Scholar 

  18. Wang, C.N., Ma, J.: A review and guidance for pattern selection in spatiotemporal system. Int. J. Mod. Phys. B 32, 1830003 (2018)

    Article  MathSciNet  Google Scholar 

  19. Ma, J., Tang, J.: A review for dynamics in neuron and neuronal network. Nonlinear Dyn. 89, 1569–1578 (2017)

    Article  MathSciNet  Google Scholar 

  20. Li, H.Y., Sun, X.J., Xiao, J.H.: Stochastic multiresonance in coupled excitable FHN neurons. Chaos 28, 043113 (2018)

    Article  MathSciNet  Google Scholar 

  21. Sun, X., Liu, Z.: Combined effects of time delay and noise on the ability of neuronal network to detect the subthreshold signal. Nonlinear Dyn. 92, 1707–1717 (2018)

    Article  Google Scholar 

  22. Azevedo, F.A., Carvalho, L.R., Grinberg, L.T., Farfel, J.M., Ferretti, R.E., Leite, R.E., Jacob, F.W., Lent, R., Herculano-Houzel, S.: Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J. Comp. Neurol. 513, 532–541 (2009)

    Article  Google Scholar 

  23. Haydon, P.G.: GLIA: listening and talking to the synapse. Nat. Rev. Neurosci. 2, 185–193 (2001)

    Article  Google Scholar 

  24. Liang, X., Tang, M., Dhamala, M., Liu, Z.: Phase synchronization of inhibitory bursting neurons induced by distributed time delays in chemical coupling. Phys. Rev. E 80, 066202 (2009)

    Article  Google Scholar 

  25. Inchiosa, M.E., Bulsara, A.R.: Coupling enhances stochastic resonance in nonlinear dynamic elements driven by a sinusoid plus noise. Phys. Lett. A 200, 283–288 (1995)

    Article  Google Scholar 

  26. Wu, D., Zhu, S., Luo, X., Wu, L.: Effects of adaptive coupling on stochastic resonance of small-world networks. Phys. Rev. E 84, 021102 (2011)

    Article  Google Scholar 

  27. Zhang, R., Hu, M., Xu, Z.: Synchronization in complex networks with adaptive coupling. Phys. Lett. A 368, 276–280 (2007)

    Article  Google Scholar 

  28. Ren, Q., Zhao, J.: Adaptive coupling and enhanced synchronization in coupled phase oscillators. Phys. Rev. E 76, 016207 (2007)

    Article  Google Scholar 

  29. Sun, X.J., Zheng, Y.H.: Effects of time-periodic intercoupling strength on the spiking regularity of a clustered neuronal network. Int. J. Bifurc. Chaos 24, 186 (2014)

    MathSciNet  MATH  Google Scholar 

  30. Sun, X.J., Han, F., Wiercigroch, M., Shi, X.: Effects of time-periodic intercoupling strength on burst synchronization of a clustered neuronal network. Int. J. Nonlinear Mech. 70, 119–125 (2015)

    Article  Google Scholar 

  31. Markram, H., Lübke, J., Frotscher, M., Sakmann, B.: Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275, 213–215 (1997)

    Article  Google Scholar 

  32. Izhikevich, E., Desai, N.: Relating STDP to BCM. Neural Comput. 15, 1511–1523 (2003)

    Article  MATH  Google Scholar 

  33. Saudargiene, A., Porr, B., Wörgötter, F.: How the shape of pre- and postsynaptic signals can influence STDP: a biophysical model. Neural Comput. 16, 595–625 (2004)

    Article  MATH  Google Scholar 

  34. Xie, H., Gong, Y., Wang, Q.: Effect of spike-timing-dependent plasticity on coherence resonance and synchronization transitions by time delay in adaptive neuronal networks. Eur. Phys. J. B 89, 1–7 (2016)

    Article  MathSciNet  Google Scholar 

  35. Yu, H.T., Guo, X.M., Wang, J., Liu, C., Deng, B., Wei, X.L.: Adaptive stochastic resonance in self-organized small-world neuronal networks with time delay. Commun. Nonlinear Sci. 29, 346–358 (2015)

    Article  MathSciNet  Google Scholar 

  36. Liao, X., Vasilakos, A.V., He, Y.: Small-world human brain networks: perspectives and challenges. Neurosci. Biobehav. Rev. 77, 286–300 (2017)

    Article  Google Scholar 

  37. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393, 440–442 (1998)

    Article  MATH  Google Scholar 

  38. Faghiri, A., Stephen, J.M., Wang, Y.P., Wilson, T.W., Calhoun, V.D.: Changing brain connectivity dynamics: from early childhood to adulthood. Hum. Brain Mapp. 39, 1108–1117 (2018)

    Article  Google Scholar 

  39. Cao, M., Wang, J.H., Dai, Z.J., Cao, X.Y., Jiang, L.L., Fan, F.M., Song, X.W., Xia, M.R., Shu, N., Dong, Q.: Topological organization of the human brain functional connectome across the lifespan. Dev. Cogn. Neurosci. 7, 76 (2014)

    Article  Google Scholar 

  40. Cao, M., Shu, N., Cao, Q., Wang, Y., He, Y.: Imaging functional and structural brain connectomics in attention-deficit/hyperactivity disorder. Mol. Neurobiol. 50, 1111–1123 (2014)

    Article  Google Scholar 

  41. Cao, Q., Shu, N., An, L., Wang, P., Sun, L., Xia, M.R., Wang, J.H., Gong, G.L., Zang, Y.F., Wang, Y.F.: Probabilistic diffusion tractography and graph theory analysis reveal abnormal white matter structural connectivity networks in drug-naive boys with attention deficit/hyperactivity disorder. J. Neurosci. 33, 10676–10687 (2013)

    Article  Google Scholar 

  42. Ozer, M., Perc, M., Uzuntarla, M.: Stochastic resonance on Newman–Watts networks of Hodgkin-Huxley neurons with local periodic driving. Phys. Lett. A 373, 964–968 (2009)

    Article  MATH  Google Scholar 

  43. Yu, H.T., Wang, J., Du, J.W., Deng, B., Wei, X.L., Liu, C.: Effects of time delay on the stochastic resonance in small-world neuronal networks. Chaos 23, 013128 (2013)

    Article  MathSciNet  Google Scholar 

  44. Yu, H.T., Wang, J., Liu, C., Deng, B., Wei, X.L.: Stochastic resonance on a modular neuronal network of small-world subnetworks with a subthreshold pacemaker. Chaos 21, 047502 (2011)

    Article  MATH  Google Scholar 

  45. Sun, X.J., Li, G.F.: Synchronization transitions induced by partial time delay in a excitatory-inhibitory coupled neuronal network. Nonlinear Dyn. 89, 1–12 (2017)

    Article  MathSciNet  Google Scholar 

  46. Yan, H., Sun, X.J.: Impact of partial time delay on temporal dynamics of Watts–Strogatz small-world neuronal networks. Int. J. Bifurc. Chaos 27, 1750112 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  47. Yu, W.T., Tang, J., Ma, J., Yang, X.: Heterogeneous delay-induced asynchrony and resonance in a small-world neuronal network system. EPL-Europhys. Lett. 114, 50006 (2016)

    Article  Google Scholar 

  48. Zhu, J., Chen, Z., Liu, X.: Effects of distance-dependent delay on small-world neuronal networks. Phys. Rev. E 93, 042417 (2016)

    Article  MathSciNet  Google Scholar 

  49. Yu, H., Wang, J., Du, J., Deng, B., Wei, X., Liu, C.: Effects of time delay and random rewiring on the stochastic resonance in excitable small-world neuronal networks. Phys. Rev. E 87, 052917 (2013)

    Article  Google Scholar 

  50. Wang, Q.Y., Perc, M., Duan, Z.S., Chen, G.R.: Impact of delays and rewiring on the dynamics of small-world neuronal networks with two types of coupling. Physica A 389, 3299–3306 (2010)

    Article  Google Scholar 

  51. Wang, Q.Y., Duan, Z.S., Perc, M., Chen, G.R.: Synchronization transitions on small-world neuronal networks: effects of information transmission delay and rewiring probability. EPL-Europhys. Lett. 83(5), 50008 (2008)

    Article  Google Scholar 

  52. Perc, M.: Stochastic resonance on excitable small-world networks via a pacemaker. Phys. Rev. E 76, 066203 (2007)

    Article  Google Scholar 

  53. Wang, Q.Y., Perc, M., Duan, Z.S., Chen, G.R.: Delay-induced multiple stochastic resonances on scale-free neuronal networks. Chaos 19, 023112 (2009)

    Article  Google Scholar 

  54. Wang, Q.Y., Chen, G.R., Perc, M.: Synchronous bursts on scale-free neuronal networks with attractive and repulsive coupling. PLoS ONE 6, e15851 (2011)

    Article  Google Scholar 

  55. Jia, Y.B., Gu, H.G.: Transition from double coherence resonances to single coherence resonance in a neuronal network with phase noise. Chaos 25(12), L453 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  56. Sun, X.J., Perc, M., Lu, Q.S., Kurths, J.: Effects of correlated Gaussian noise on the mean firing rate and correlations of an electrically coupled neuronal network. Chaos 20(3), 1104 (2010)

    Article  Google Scholar 

  57. FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445–466 (1961)

    Article  Google Scholar 

  58. Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. Proc. IRE 50, 2061–2070 (1962)

    Article  Google Scholar 

  59. Fox, R.F., Gatland, I.R., Roy, R., Vemuri, G.: Fast, accurate algorithm for numerical simulation of exponentially correlated colored noise. Phys. Rev. A 38, 5938 (1988)

    Article  Google Scholar 

Download references

Acknowledgements

Xiaojuan Sun thanks for the supports by the National Natural Science Foundation of China (Grant Nos. 11472061, 11772069) and the Fundamental Research Funds for the Central University (No. 2018XKJC02). Matjaž Perc acknowledges support from the Slovenian Research Agency (Grant Nos. P5-0027 and J1-7009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojuan Sun.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Liu, Z. & Perc, M. Effects of coupling strength and network topology on signal detection in small-world neuronal networks. Nonlinear Dyn 96, 2145–2155 (2019). https://doi.org/10.1007/s11071-019-04914-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-04914-w

Keywords

Navigation