The influence of friction parameters in a ball-screw energy-harvesting shock absorber

Abstract

Energy-harvesting shock absorbers (EHSAs) have been introduced in the last decade as a viable technology for improving the performance and durability of electric and/or hybrid vehicles. However, in order to gauge the potential that can be obtained from this technology in different environments, the computational models that are used should behave as close to reality as possible. One of the limiting factors in EHSAs, in terms of recoverable energy, is frictional losses between its moving parts. Depending on the friction losses, the dynamics and efficiency of the system will vary. This paper presents a method of identifying the friction parameters in a ball-screw energy-harvesting shock absorber (BS-EHSA) system for subsequent computational simulation. In addition, it shows qualitative and quantitative results of how these friction parameters could affect the comfort and adhesion of the vehicle, as well as the generated power and energy efficiency of the BS-EHSA.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

References

  1. 1.

    Amati, N., Festini, A., Tonolii, A.: Design of electromagnetic shock absorbers for automotive suspensions. Veh. Syst. Dyn. 49(12), 1913–1928 (2011)

    Article  Google Scholar 

  2. 2.

    Amatia, N., Canova, A., Cavalli, F., Carabelli, S., Festini, A., Tonoli, A., Caviasso, G.: Electromagnetic shock absorbers for automotive suspensions: Electromechanical design. In: ASME 8th Biennial Conference on Engineering Systems Design and Analysis (2006)

  3. 3.

    Benini, C., Gadola, M., Chindamo, D., Uberti, S., Marchesin, F.P., Barbosa, R.S.: The influence of suspension components friction on race car vertical dynamics. Veh. Syst. Dyn. 55(3), 338–350 (2017). https://doi.org/10.1080/00423114.2016.1267370

    Article  Google Scholar 

  4. 4.

    Bowen, L., Vinolas, J., OLazagoitia, J.: Methodology for comparing the functional performance of energy harvesting shock absorbers. Int. J. Appl. Electromagn. Mech. 2017, 545–564 (2017). https://doi.org/10.3233/JAE-170057

    Article  Google Scholar 

  5. 5.

    Bruni, S., Vinolas, J., Berg, M., Polach, O., Stichel, S.: Modelling of suspension components in a rail vehicle dynamics context. Veh. Syst. Dyn. 49(7), 1021–1072 (2011). https://doi.org/10.1080/00423114.2011.586430

    Article  Google Scholar 

  6. 6.

    Erturk, A., Inman, D.: Broadband piezoelectric power generation on high-energy orbits of the bistable duffing oscillator with electromechanical coupling. J. Sound Vib. 330(10), 2339–2353 (2011). https://doi.org/10.1016/j.jsv.2010.11.018. (Dynamics of Vibro-Impact Systems)

    Article  Google Scholar 

  7. 7.

    Fang, Z., Guo, X., Xu, L., Zhang, H.: Experimental study of damping and energy regeneration characteristics of a hydraulic electromagnetic shock absorber. Adv. Mech. Eng. 5, 943,528 (2013). https://doi.org/10.1155/2013/943528

    Article  Google Scholar 

  8. 8.

    Galluzzi, R., Tonoli, A., Amati, N., Curcuruto, G., Conti, P., Greco, G., Nepote, A.: Regenerative shock absorbers and the role of the motion rectifier. In: SAE technical paper. SAE International (2016). https://doi.org/10.4271/2016-01-1552

  9. 9.

    Gembicki, F., Haimes, Y.: Approach to performance and sensitivity multiobjective optimization: the goal attainment method. IEEE Trans. Autom. Control 20(6), 769–771 (1975). https://doi.org/10.1109/TAC.1975.1101105

    Article  Google Scholar 

  10. 10.

    Guo, S., Liu, Y., Xu, L., Guo, X., Zuo, L.: Performance evaluation and parameter sensitivity of energy-harvesting shock absorbers on different vehicles. Veh. Syst. Dyn. 54(7), 918–942 (2016)

    Article  Google Scholar 

  11. 11.

    Iwnicki, S.: Handbook of Railway Vehicle Dynamics. Taylor and Francis Group, Boca Raton (2006)

    Google Scholar 

  12. 12.

    Kashani, H.: Analytical parametric study of bi-linear hysteretic model of dry friction under harmonic, impulse and random excitations. Nonlinear Dyn. 89(1), 267–279 (2017). https://doi.org/10.1007/s11071-017-3452-y

    Article  Google Scholar 

  13. 13.

    Li, P., Zuo, L.: Influences of the electromagnetic regenerative dampers on the vehicle suspension performance. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 231(3), 383–394 (2016)

    Article  Google Scholar 

  14. 14.

    Li, Z., Zuo, L., Kuang, J., George, L.: Energy-harvesting shock absorber with a mechanical motion rectifier. Smart Mater. Struct. 22(2), 025008 (2013)

    Article  Google Scholar 

  15. 15.

    Li, Z., Zuo, L., Luhrs, G., Lin, L., Qin, Yx: Electromagnetic energy-harvesting shock absorbers: design, modeling, and road tests. IEEE Trans. Veh. Technol. 62(3), 1065–1074 (2013)

    Article  Google Scholar 

  16. 16.

    Lin, X., Bo, Y., Xuexun, G., Jun, Y.: Simulation and performance evaluation of hydraulic transmission electromagnetic energy-regenerative active suspension. In: 2010 Second WRI Global Congress on Intelligent Systems, vol. 3, pp. 58–61 (2010). https://doi.org/10.1109/GCIS.2010.249

  17. 17.

    Liu, Y., Xu, L., Zuo, L.: Design, modeling, lab, and field tests of a mechanical-motion-rectifier-based energy harvester using a ball-screw mechanism. IEEE ASME Trans. Mechatron. 22(5), 1933–1943 (2017)

    Article  Google Scholar 

  18. 18.

    Maravandi, A., Moallem, M.: Regenerative shock absorber using a two-leg motion conversion mechanism. IEEE ASME Trans. Mechatron. 20(6), 2853–2861 (2015). https://doi.org/10.1109/TMECH.2015.2395437

    Article  Google Scholar 

  19. 19.

    Nagode, C., Ahmadian, M., Taherii, S.: Vibration-based energy harvesting systems for on-board applications. In: Joint Rail Conference (2011)

  20. 20.

    Oprea, R.A., Mihailescu, M., Chirila, A.I., Deaconu, I.D.: Design and efficiency of linear electromagnetic shock absorbers. In: 2012 13th International Conference on Optimization of Electrical and Electronic Equipment (OPTIM) (2012)

  21. 21.

    Peng, M., Guo, X., Zou, J., Zhang, C.: Simulation study on vehicle road performance with hydraulic electromagnetic energy-regenerative shock absorber. In: SAE technical paper. SAE International (2016). https://doi.org/10.4271/2016-01-1550

  22. 22.

    Popp, K.: Non-smooth mechanical systems—an overview. Forsch. Ing. 64(9), 223 (1998). https://doi.org/10.1007/PL00010860

    Article  Google Scholar 

  23. 23.

    Popp, K., Hinrichs, N., Oestreich, M.: Dynamical behaviour of a friction oscillator with simultaneous self and external excitation. Sadhana 20(2), 627–654 (1995). https://doi.org/10.1007/BF02823210

    MathSciNet  MATH  Article  Google Scholar 

  24. 24.

    Sabzehgar, R., Maravandi, A., Moallem, M.: Energy regenerative suspension using an algebraic screw linkage mechanism. IEEE ASME Trans. Mechatron. 19(4), 1251–1259 (2014). https://doi.org/10.1109/TMECH.2013.2277854

    Article  Google Scholar 

  25. 25.

    Vidmar, B.J., Feeny, B.F., Shaw, S.W., Haddow, A.G., Geist, B.K., Verhanovitz, N.J.: The effects of coulomb friction on the performance of centrifugal pendulum vibration absorbers. Nonlinear Dyn. 69(1), 589–600 (2012). https://doi.org/10.1007/s11071-011-0289-7

    MathSciNet  Article  Google Scholar 

  26. 26.

    Wei, C., Taghavifar, H.: A novel approach to energy harvesting from vehicle suspension system: half-vehicle model. Energy 134, 279–288 (2017). https://doi.org/10.1016/j.energy.2017.06.034

    Article  Google Scholar 

  27. 27.

    Xie, X., Wang, Q.: Energy harvesting from a vehicle suspension system. Energy 86, 385–392 (2015). https://doi.org/10.1016/j.energy.2015.04.009

    Article  Google Scholar 

  28. 28.

    Xuezheng, J., Wang, J., Yancheng, L., Jianchun, L.: Design and modelling of a novel linear electromagnetic vibration energy harvester. Int. J. Appl. Electromagn. Mech. 46(1), 165–183 (2014)

    Article  Google Scholar 

  29. 29.

    Zhang, G., Cao, J., Yu, F.: Design of active and energy-regenerative controllers for dc-motor-based suspension. Mechatronics 22(8), 1124–1134 (2012)

    Article  Google Scholar 

  30. 30.

    Zhang, X., Xu, J., Feng, Z.: Nonlinear equivalent model and its identification for a delayed absorber with magnetic action using distorted measurement. Nonlinear Dyn. 88(2), 937–954 (2017). https://doi.org/10.1007/s11071-016-3286-z

    Article  Google Scholar 

  31. 31.

    Zhang, Y., Chen, H., Guo, K., Zhang, X., Li, S.E.: Electro-hydraulic damper for energy harvesting suspension: modeling, prototyping and experimental validation. Appl. Energy 199, 1–12 (2017). https://doi.org/10.1016/j.apenergy.2017.04.085

    Article  Google Scholar 

  32. 32.

    Zhang, Y., Guo, K., Wang, D., Chen, C., Li, X.: Energy conversion mechanism and regenerative potential of vehicle suspensions. Energy 119, 961–970 (2017). https://doi.org/10.1016/j.energy.2016.11.045

    Article  Google Scholar 

  33. 33.

    Zhang, Y., Zhang, X., Zhan, M., Guo, K., Zhao, F., Liu, Z.: Study on a novel hydraulic pumping regenerative suspension for vehicles. J. Frankl. Inst. 352(2), 485–499 (2015). https://doi.org/10.1016/j.jfranklin.2014.06.005. (Special Issue on Control and Estimation of Electrified vehicles)

    MATH  Article  Google Scholar 

  34. 34.

    Zhang, Z., Zhang, X., Chen, W., Rasim, Y., Salman, W., Pan, H., Yuan, Y., Wang, C.: A high-efficiency energy regenerative shock absorber using supercapacitors for renewable energy applications in range extended electric vehicle. Appl. Energy 178, 177–188 (2016). https://doi.org/10.1016/j.apenergy.2016.06.054

    Article  Google Scholar 

  35. 35.

    Zhu, H., Yang, J., Zhang, Y., Feng, X., Ma, Z.: Nonlinear dynamic model of air spring with a damper for vehicle ride comfort. Nonlinear Dyn. 89(2), 1545–1568 (2017). https://doi.org/10.1007/s11071-017-3535-9

    Article  Google Scholar 

  36. 36.

    Zou, J., Guo, X., Xu, L., Gangfeng, T., Zhang, C., Zhang, J.: Design, modeling, and analysis of a novel hydraulic energy-regenerative shock absorber for vehicle suspension. Shock Vib. 2017, 12 (2017). https://doi.org/10.1155/2017/3186584

    Article  Google Scholar 

  37. 37.

    Zuo, L., Nayfeh, S.: Low order continuous-time filters for approximation of the iso 2631-1 human vibration sensitivity weightings. J. Sound Vib. 265(2), 459–465 (2003). https://doi.org/10.1016/S0022-460X(02)01567-5

    Article  Google Scholar 

  38. 38.

    Zuo, L., Scully, B., Shestani, J., Zhou, Y.: Design and characterization of an electromagnetic energy harvester for vehicle suspensions. Smart Mater. Struct. 19(4), 045003 (2010)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to L. Bowen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bowen, L., Vinolas, J. & Olazagoitia, J.L. The influence of friction parameters in a ball-screw energy-harvesting shock absorber. Nonlinear Dyn 96, 2241–2256 (2019). https://doi.org/10.1007/s11071-019-04912-y

Download citation

Keywords

  • Multi-objective optimization techniques
  • EHSA
  • Energy harvesting
  • Electromagnetic shock absorber
  • Non-linearities
  • Vehicular dynamics
  • Ride comfort