Skip to main content
Log in

Exponential ultimate boundedness of fractional-order differential systems via periodically intermittent control

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This article investigates the exponential ultimate boundedness of fractional-order differential systems via periodically intermittent control. By utilizing the Lyapunov function method and the monotonicity of the Mittag-Leffler function along with the periodically intermittent controller, several sufficient conditions ensuring the exponential ultimate boundedness of the addressed systems are obtained. An example is given to explain the obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Xu, D., Yang, Z.: Impulsive delay differential inequality and stability of neural networks. J. Math. Anal. Appl. 305, 107–120 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Huang, Y., Xu, D., Yang, Z.: Dissipativity and periodic attractor for non-autonomous neural networks with time-varying delays. Neurocomputing 70, 2953–2958 (2007)

    Article  Google Scholar 

  3. Xu, D., Long, S.: Attracting and quasi-invariant sets of non-autonomous neural networks with delays. Neurocomputing 77, 222–228 (2012)

    Article  Google Scholar 

  4. Xu, L., Xu, D.: Exponential \(p\)-stability of impulsive stochastic neural networks with mixed delays. Chaos Solitons Fractals 41, 263–272 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Xu, D., Zhou, W.: Existence-uniqueness and exponential estimate of pathwise solutions of retarded stochastic evolution systems with time smooth diffusion coefficients. Discrete Contin. Dyn. Syst. Ser. A 37, 2161–2180 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Xu, D., Xu, L.: New results for studying a certain class of nonlinear delay differential systems. IEEE Trans. Autom. Control 55, 1641–1645 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Xu, L., Ge, S.S., Hu, H.: Boundedness and stability analysis for impulsive stochastic differential equations driven by \(G\)-Brownian motion. Int. J. Control (2017). https://doi.org/10.1080/00207179.2017.1364426

    Google Scholar 

  8. Xu, L., Ge, S.S.: Asymptotic behavior analysis of complex-valued impulsive differential systems with time-varying delays. Nonlinear Anal. Hybrid Syst. 27, 13–28 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hu, H., Xu, L.: Existence and uniqueness theorems for periodic Markov process and applications to stochastic functional differential equations. J. Math. Anal. Appl. 466, 896–926 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fan, X., Chen, H.: Attractors for the stochastic reaction–diffusion equation driven by linear multiplicative noise with a variable coefficient. J. Math. Anal. Appl. 398, 715–728 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. He, D., Xu, L.: Ultimate boundedness of non-autonomous dynamical complex networks under impulsive control. IEEE Trans. Circuits Syst. II Exp. Briefs 62, 997–1001 (2015)

    Article  Google Scholar 

  12. Xu, L., Hu, H., Qin, F.: Ultimate boundedness of impulsive fractional differential equations. Appl. Math. Lett. 62, 110–117 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Xu, L., Dai, Z., He, D.: Exponential ultimate boundedness of impulsive stochastic delay differential equations. Appl. Math. Lett. 85, 7–76 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Rakkiyappan, R., Balasubramaniama, P., Cao, J.: Global exponential stability results for neutral-type impulsive neural networks. Nonlinear Anal. Real World Appl. 11, 122–130 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, X., Rakkiyappanb, R., Balasubramaniam, P.: Existence and global stability analysis of equilibrium of fuzzy cellular neural networks with time delay in the leakage term under impulsive perturbations. J. Frankl. Inst. 348, 135–155 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhou, C., Zhang, H., Zhang, H., Dang, C.: Global exponential stability of impulsive fuzzy Cohen–Grossberg neural networks with mixed delays and reaction–diffusion terms. Neurocomputing 91, 67–76 (2012)

    Article  Google Scholar 

  17. Deissenberg, C.: Optimal control of linear econometric models with intermittent controls. Econ. Plan. 16, 49–56 (1980)

    Article  MATH  Google Scholar 

  18. Zochowski, M.: Intermittent dynamical control. Physica D 145, 181–190 (2000)

    Article  MATH  Google Scholar 

  19. Li, C., Feng, G., Liao, X.: Stabilization of nonlinear systems via periodically intermittent control. IEEE Trans. Circuits Syst. II Exp. Briefs 54, 1019–1023 (2007)

    Article  Google Scholar 

  20. Hu, C., Yu, J., Jiang, H., Teng, Z.: Exponential stabilization and synchronization of neural networks with time-varying delays via periodically intermittent control. Nonlinearity 23, 2369–2391 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Huang, J., Li, C., Han, Q.: Stabilization of delayed chaotic neural networks by periodically intermittent control. Circuits Syst. Signal Process. 28, 567–579 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Song, Q., Huang, T.: Stabilization and synchronization of chaotic systems with mixed time-varying delays via intermittent control with non-fixed both control period and control width. Neurocomputing 154, 61–69 (2015)

    Article  Google Scholar 

  23. Samko, S., Kilbas, A., Marichev, O.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Yverdon (1993)

    MATH  Google Scholar 

  24. Zähle, M.: Integration with respect to fractal functions and stochastic calculus I. Probab. Theory Relat. Fields 111, 333–374 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. Aguila-Camacho, N., Duarte-Mermoud, M.A.: Comments on “fractional order Lyapunov stability theorem and its applications in synchronization of complex dynamical networks”. Commun. Nonlinear Sci. Numer. Simul. 25, 145–148 (2015)

    Article  MathSciNet  Google Scholar 

  26. Yang, X., Song, Q., Li, C., Huang, T.: Global Mittag–Leffler stability and synchronization analysis of fractional-order quaternion-valued neural networks with linear threshold neurons. Neural Netw. 47, 427–442 (2018)

    Google Scholar 

  27. Song, Q., Yang, X., Li, C., Huang, T., Chen, X.: Stability analysis of nonlinear fractional-order systems with variable-time impulses. J. Frankl. Inst. 354, 2959–2978 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang, F., Yang, Y., Hu, A., Xu, X.: Exponential synchronization of fractional-order complex networks via pinning impulsive control. Nonlinear Dyn. 82, 1979–1987 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang, F., Yang, Y., Xu, X., Li, L.: Global asymptotic stability of impulsive fractional-order BAM neural networks with time delay. Neural Comput. Appl. 28, 345–352 (2017)

    Article  Google Scholar 

  30. Wang, F., Yang, Y.: Quasi-synchronization for fractional-order delayed dynamical networks with heterogeneous nodes. Appl. Math. Comput. 339, 1–14 (2018)

    Article  MathSciNet  Google Scholar 

  31. Xu, L., Li, J., Ge, S.S.: Impulsive stabilization of fractional differential systems. ISA Trans. 70, 125–131 (2017)

    Article  Google Scholar 

  32. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  33. Duarte-Mermoud, M., Aguila-Camacho, N., Gallegos, J., Castro-Linares, R.: Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 22, 650–659 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Xu, S., Chen, T., Lam, J.: Robust \(H_\infty \) filtering for uncertain Markovian jump systems with mode-dependent time delays. IEEE Trans. Autom. Control 48(5), 900–907 (2003)

    Article  MATH  Google Scholar 

  35. Wu, A., Zeng, Z.: Boundedness, Mittag–Leffler stability and asymptotical \(\omega \)-periodicity of fractional-order fuzzy neural networks. Neural Netw. 74, 73–84 (2015)

    Article  MATH  Google Scholar 

  36. Wan, P., Jian, J., Mei, J.: Periodically intermittent control strategies for \(\alpha \)-exponential stabilization of fractional-order complex-valued delayed neural networks. Nonlinear Dyn. 92, 247–265 (2018)

    Article  MATH  Google Scholar 

  37. Wang, F., Yang, Y.: Intermittent synchronization of fractional order coupled nonlinear systems based on a new differential inequality. Physica A 512, 142–152 (2018)

    Article  MathSciNet  Google Scholar 

  38. Li, H., Hu, C., Jiang, H., Teng, Z., Jiang, Y.: Synchronization of fractional-order complex dynamical networks via periodically intermittent pinning control. Chaos Solitons Fractals 103, 357–363 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work is supported by the National Natural Science Foundation of China under Grants 11501518, 11771397 and 11701060 and the Natural Science Foundation of Chongqing under Grant KJ1704099. The authors are very grateful to the Editors and the Reviewers for their insightful and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weisong Zhou.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest in preparing this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Liu, W., Hu, H. et al. Exponential ultimate boundedness of fractional-order differential systems via periodically intermittent control. Nonlinear Dyn 96, 1665–1675 (2019). https://doi.org/10.1007/s11071-019-04877-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-04877-y

Keywords

Navigation