Skip to main content
Log in

Adjustable template stiffness device and SDOF nonlinear frequency response

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Devices with displacement dependent stiffness have been explored for vibration isolation. In this paper, an adjustable template stiffness device (ATSD) is presented. The ATSD is made up of pre-compressed springs attached to rollers, rolling along curved templates that allow adjustment of stiffness as a predetermined function of displacement. The ATSD configuration is presented in detail, and an analytical model is developed and validated using test results. The ATSD is tested under harmonic motion to determine its force–displacement behavior; then, it is connected to a single degree of freedom system, with an additional linear elastic stiffness spring, and tested on a shaking table to determine its vibration characteristics. The combination of the ATSD and the additional linear spring results in a composite nonlinear elastic spring with an initial softening behavior followed by hardening behavior or vice versa, i.e., depending on the chosen curved template. Frequency response curves obtained from test results are presented to demonstrate the capability of the ATSD. The new ATSD can be used for vibration isolation studies in future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Alabuzhev, P., Rivin, E.I.: Vibration Protection and Measuring Systems with Quasi-Zero Stiffness. CRC Press, Boca Raton (1989)

    Google Scholar 

  2. Ibrahim, R.: Recent advances in nonlinear passive vibration isolators. J. Sound Vib. 314(3), 371–452 (2008)

    Article  Google Scholar 

  3. Wang, Y., Li, S., Neild, S.A., Jiang, J.Z.: Comparison of the dynamic performance of nonlinear one and two degree-of-freedom vibration isolators with quasi-zero stiffness. Nonlinear Dyn. 88(1), 635–654 (2017)

    Article  Google Scholar 

  4. Zou, K., Nagarajaiah, S.: The solution structure of the Düffing oscillators transient response and general solution. Nonlinear Dyn. 81(1–2), 621–639 (2015)

    Article  MATH  Google Scholar 

  5. Benacchio, S., Malher, A., Boisson, J., Touzé, C.: Design of a magnetic vibration absorber with tunable stiffnesses. Nonlinear Dyn. 85(2), 893–911 (2016)

    Article  MathSciNet  Google Scholar 

  6. Acar, M., Yilmaz, C.: Design of an adaptive–passive dynamic vibration absorber composed of a string–mass system equipped with negative stiffness tension adjusting mechanism. J. Sound Vib. 332(2), 231–245 (2013)

    Article  Google Scholar 

  7. Carrella, A., Brennan, M., Waters, T., Shin, K.: On the design of a high-static–low-dynamic stiffness isolator using linear mechanical springs and magnets. J. Sound Vib. 315(3), 712–720 (2008)

    Article  Google Scholar 

  8. Carrella, A., Brennan, M., Kovacic, I., Waters, T.: On the force transmissibility of a vibration isolator with quasi-zero-stiffness. J. Sound Vib. 322(4), 707–717 (2009)

    Article  Google Scholar 

  9. Dong, L., Lakes, R.S.: Advanced damper with negative structural stiffness elements. Smart Mater. Struct. 21(7), 075026 (2012)

    Article  Google Scholar 

  10. Franchek, M., Ryan, M., Bernhard, R.: Adaptive passive vibration control. J. Sound Vib. 189(5), 565–585 (1996)

    Article  MATH  Google Scholar 

  11. Kovacic, I., Brennan, M.J., Waters, T.P.: A study of a nonlinear vibration isolator with a quasi-zero stiffness characteristic. J. Sound Vib. 315(3), 700–711 (2008)

    Article  Google Scholar 

  12. Lee, C.-M., Goverdovskiy, V., Temnikov, A.: Design of springs with negative stiffness to improve vehicle driver vibration isolation. J. Sound Vib. 302(4), 865–874 (2007)

    Article  Google Scholar 

  13. Le, T.D., Ahn, K.K.: A vibration isolation system in low frequency excitation region using negative stiffness structure for vehicle seat. J. Sound Vib. 330(26), 6311–6335 (2011)

    Article  Google Scholar 

  14. Lu, L.-Y., Chu, S.-Y., Yeh, S.-W., Chung, L.-L.: Seismic test of least-input-energy control with ground velocity feedback for variable-stiffness isolation systems. J. Sound Vib. 331(4), 767–784 (2012)

    Article  Google Scholar 

  15. Pasala, D., Sarlis, A., Nagarajaiah, S., Reinhorn, A., Constantinou, M., Taylor, D.: Adaptive negative stiffness: new structural modification approach for seismic protection. J. Sound Vib. 139(7), 1112–1123 (2012)

    Google Scholar 

  16. Platus, D.L.: Negative-stiffness-mechanism vibration isolation systems. In: SPIE’s International Symposium on Optical Science, Engineering, and Instrumentation, pp. 98–105. International Society for Optics and Photonics (1999)

  17. Sarlis, A., Pasala, D., Constantinou, M., Reinhorn, A., Nagarajaiah, S., Taylor, D.: Negative stiffness device for seismic protection of structures. J. Struct. Eng. 139(7), 1124–1133 (2012)

    Article  Google Scholar 

  18. Shi, X., Zhu, S.: Magnetic negative stiffness dampers. Smart Mater. Struct. 24(7), 072002 (2015)

    Article  Google Scholar 

  19. Spencer Jr., B., Nagarajaiah, S.: State of the art of structural control. J. Struct. Eng. 129(7), 845–856 (2003)

    Article  Google Scholar 

  20. Virgin, L., Davis, R.: Vibration isolation using buckled struts. J. Sound Vib. 260(5), 965–973 (2003)

    Article  Google Scholar 

  21. Walsh, P., Lamancusa, J.: A variable stiffness vibration absorber for minimization of transient vibrations. J. Sound Vib. 158(2), 195–211 (1992)

    Article  Google Scholar 

  22. Weber, F., Boston, C.: Clipped viscous damping with negative stiffness for semi-active cable damping. Smart Mater. Struct. 20(4), 045007 (2011)

    Article  Google Scholar 

  23. Yilmaz, C., Kikuchi, N.: Analysis and design of passive band-stop filter-type vibration isolators for low-frequency applications. J. Sound Vib. 291(3), 1004–1028 (2006)

    Article  Google Scholar 

  24. Zhou, N., Liu, K.: A tunable high-static–low-dynamic stiffness vibration isolator. J. Sound Vib. 329(9), 1254–1273 (2010)

    Article  Google Scholar 

  25. Sun, C., Nagarajaiah, S., Dick, A.: Experimental investigation of vibration attenuation using nonlinear tuned mass damper and pendulum tuned mass damper in parallel. Nonlinear Dyn. 78(4), 2699–2715 (2014)

    Article  Google Scholar 

  26. Zou, K., Nagarajaiah, S.: Study of a piecewise linear dynamic system with negative and positive stiffness. Commun. Nonlinear Sci. Numer. Simul. 22(1), 1084–1101 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Attary, N., Symans, M., Nagarajaiah, S., Reinhorn, A., Constantinou, M., Sarlis, A., Pasala, D., Taylor, D.: Performance evaluation of negative stiffness devices for seismic response control of bridge structures via experimental shake table tests. J. Earthq. Eng. 19(2), 249–276 (2015)

    Article  Google Scholar 

  28. Attary, N., Symans, M., Nagarajaiah, S., Reinhorn, A.M., Constantinou, M.C., Sarlis, A.A., Pasala, D.T., Taylor, D.P.: Experimental shake table testing of an adaptive passive negative stiffness device within a highway bridge model. Earthq. Spectra 31(4), 2163–2194 (2015)

    Article  Google Scholar 

  29. Nagarajaiah, S.: Adaptive passive, semiactive, smart tuned mass dampers: identification and control using empirical mode decomposition, Hilbert transform, and short-term Fourier transform. Struct. Control Health Monit. 16(7–8), 800–841 (2009)

    Article  Google Scholar 

  30. Sun, T., Lai, Z., Nagarajaiah, S., Li, H.-N.: Negative stiffness device for seismic protection of smart base isolated benchmark building. Struct. Control Health Monit. 24(11), e1968 (2017)

    Article  Google Scholar 

  31. Li, H.-N., Sun, T., Lai, Z., Nagarajaiah, S.: Effectiveness of negative stiffness system in the benchmark structural-control problem for seismically excited highway bridges. J. Bridge Eng. 23(3), 04018001 (2018)

    Article  Google Scholar 

  32. Feldman, M.: Non-linear system vibration analysis using Hilbert transform—I. Free vibration analysis method ‘freevib’. Mech. Syst. Signal Process. 8(2), 119–127 (1994)

    Article  Google Scholar 

  33. Feldman, M.: Hilbert transform in vibration analysis. Mech. Syst. Signal Process. 25(3), 735–802 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satish Nagarajaiah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, Z., Sun, T. & Nagarajaiah, S. Adjustable template stiffness device and SDOF nonlinear frequency response. Nonlinear Dyn 96, 1559–1573 (2019). https://doi.org/10.1007/s11071-019-04871-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-04871-4

Keywords

Navigation