Skip to main content

Advertisement

Log in

Time delay improves beneficial performance of a novel hybrid energy harvester

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The performances of an energy harvester are usually limited. To improve these, the time-delayed feedback control is used in a novel nonlinear hybrid energy harvester for different types of external excitation. Based on the generalized harmonic transformation, the equivalent uncoupled equation, the vibration response, the harvested power and stochastic resonance of the hybrid energy harvester with time-delayed control are analyzed to obtain the standards for appropriate values of different control parameters. The response under harmonic excitation exhibits that time-delayed feedback control technique can stabilize unstable periodic orbits of the attractor to enhance the output power of electromechanical systems. For harmonic excitation or stochastic excitation, the value of the averaging harvested power of the system without time-delayed feedback control is lower than that of the control system, which plays a great realistic significance in the choose of the control parameters for improving the performance of the hybrid energy harvester. In case of combined harmonic and stochastic excitations, the time-delayed feedback control also can enhance stochastic resonance phenomenon, which can lead to a large response and give out a high output power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Cottone, F., Vocca, H., Gammaitoni, L.: Nonlinear energy harvesting. Phys. Rev. Lett. 102, 080601 (2009)

    Article  Google Scholar 

  2. Litak, G., Friswell, M.I., Adhikari, S.: Magnetopiezoelastic energy harvesting driven by random excitations. Appl. Phys. Lett. 96(21), 214103 (2010)

    Article  Google Scholar 

  3. Hardy, P., Cazzolato, B.S., Ding, B., Prime, Z.: A maximum capture width tracking controller for ocean wave energy converters in irregular waves. Ocean Eng. 121, 516–529 (2016)

    Article  Google Scholar 

  4. Sergiienko, N.Y., Cazzolato, B.S., Ding, B., Arjomandi, M.: An optimal arrangement of mooring lines for the three-tether submerged point-absorbing wave energy converter. Renew. Energy 93, 27–37 (2016)

    Article  Google Scholar 

  5. Daqaq, M.F.: On intentional introduction of stiffness nonlinearities for energy harvesting under white Gaussian excitations. Nonlinear Dyn. 69(3), 1063–1079 (2012)

    Article  MathSciNet  Google Scholar 

  6. Vocca, H., Neri, I., Travasso, F., Gammaitoni, L.: Kinetic energy harvesting with bistable oscillators. Appl. Energy 97, 771–776 (2012)

    Article  Google Scholar 

  7. Ramlan, R., Brennan, M.J., Mace, B.R., Kovacic, I.: Potential benefits of a non-linear stiffness in an energy harvesting device. Nonlinear Dyn. 59(4), 545–558 (2010)

    Article  MATH  Google Scholar 

  8. Liu, W.Q., Badel, A., Formosa, F., Wu, Y.P., Agbossou, A.: Wideband energy harvesting using a combination of an optimized synchronous electric charge extraction circuit and a bistable harvester. Smart Mater. Struct. 22(12), 125038 (2013)

    Article  Google Scholar 

  9. Jiang, W.A., Chen, L.Q.: Snap-through piezoelectric energy harvesting. J. Sound Vib. 333, 4314–4325 (2014)

    Article  Google Scholar 

  10. Jiang, W.A., Chen, L.Q.: Stochastic averaging of energy harvesting systems. Int. J. Nonlinear Mech. 85, 174–187 (2016)

    Article  Google Scholar 

  11. Yang, T., Liu, J., Cao, Q.: Response analysis of the archetypal smooth and discontinuous oscillator for vibration energy harvesting. Phys. A 507, 358–373 (2018)

    Article  MathSciNet  Google Scholar 

  12. Yang, B., Lee, C., Kee, W.L., Lim, S.P.: Hybrid energy harvester based on piezoelectric and electromagnetic mechanisms. J. Micro/Nanolith. MEMS MOEMS 9(2), 023002 (2010)

    Article  Google Scholar 

  13. Xia, H., Chen, R., Ren, L.: Analysis of piezoelectric-electromagnetic hybrid vibration energy harvester under different electrical boundary conditions. Sens. Actuat. A Phys. 234, 87–98 (2015)

    Article  Google Scholar 

  14. Rajarathinam, M., Ali, S.F.: Energy generation in a hybrid harvester under harmonic excitation. Energy Convers. Manag. 155, 10–19 (2018)

    Article  Google Scholar 

  15. Cao, Q., Wiercigroch, M., Pavlovskaia, E.E., Grebogi, C., Thompson, J.M.T.: Archetypal oscillator for smooth and discontinuous dynamics. Phys. Rev. E 74(4), 046218 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hao, Z., Cao, Q.: The isolation characteristics of an archetypal dynamical model with stable-quasi-zero-stiffness. J. Sound Vib. 340, 61–79 (2015)

    Article  Google Scholar 

  17. Hao, Z., Cao, Q., Wiercigroch, M.: Nonlinear dynamics of the quasi-zero-stiffness SD oscillator based upon the local and global bifurcation analyses. Nonlinear Dyn. 87(2), 987–1014 (2017)

    Article  Google Scholar 

  18. Masoud, Z.N., Nayfeh, A.H., Mook, D.T.: Cargo pendulation reduction of ship-mounted cranes. Nonlinear Dyn. 35(3), 299–311 (2004)

    Article  MATH  Google Scholar 

  19. Alhazza, K.A., Nayfeh, A.H., Daqaq, M.F.: On utilizing delayed feedback for active-multimode vibration control of cantilever beams. J. Sound Vib. 319(3–5), 735–752 (2009)

    Article  Google Scholar 

  20. Just, W., Bernard, T., Ostheimer, M., Reibold, E., Benner, H.: Mechanism of time-delayed feedback control. Phys. Rev. Lett. 78(2), 203 (1997)

    Article  Google Scholar 

  21. Strogatz, S.H.: Nonlinear dynamics: death by delay. Nature 394(6691), 316 (1998)

    Article  Google Scholar 

  22. Huang, D., Xu, W., Xie, W., Liu, Y.: Dynamical properties of a forced vibration isolation system with real-power nonlinearities in restoring and damping forces. Nonlinear Dyn. 81(1–2), 641–658 (2015)

    Article  Google Scholar 

  23. Glass, D.S., Jin, X., Riedel-Kruse, I.H.: Signaling delays preclude defects in lateral inhibition patterning. Phys. Rev. Lett. 116(12), 128102 (2016)

    Article  Google Scholar 

  24. Alhazza, K.A., Masoud, Z.N., Alajmi, M.: Nonlinear free vibration control of beams using acceleration delayed-feedback control. Smart Mater. Struct. 17(1), 015002 (2007)

    Article  Google Scholar 

  25. Hurlebaus, S., Stöbener, U., Gaul, L.: Vibration reduction of curved panels by active modal control. Comput. Struct. 86(3–5), 251–257 (2008)

    Article  Google Scholar 

  26. Hu, H., Dowell, E.H., Virgin, L.N.: Resonances of a harmonically forced Duffing oscillator with time delay state feedback. Nonlinear Dyn. 15(4), 311–327 (1998)

    Article  MATH  Google Scholar 

  27. Nayfeh, N.A., Baumann, W.T.: Nonlinear analysis of time-delay position feedback control of container cranes. Nonlinear Dyn. 53(1–2), 75–88 (2008)

    Article  MATH  Google Scholar 

  28. Xu, J., Sun, X.: A multi-directional vibration isolator based on Quasi-Zero-Stiffness structure and time-delayed active control. Int. J. Mech. Sci. 100, 126–135 (2015)

    Article  Google Scholar 

  29. Sun, X., Xu, J., Fu, J.: The effect and design of time delay in feedback control for a nonlinear isolation system. Mech. Syst. Signal Process. 87, 206–217 (2017)

    Article  Google Scholar 

  30. Yang, T., Cao, Q.: Nonlinear transition dynamics in a time-delayed vibration isolator under combined harmonic and stochastic excitations. J. Stat. Mech. 2017(4), 043202 (2017)

    Article  MathSciNet  Google Scholar 

  31. Yang, T., Cao, Q.: Delay-controlled primary and stochastic resonances of the SD oscillator with stiffness nonlinearities. Mech. Syst. Signal Process. 103, 216–235 (2018)

    Article  Google Scholar 

  32. Karami, M.A., Inman, D.J.: Equivalent damping and frequency change for linear and nonlinear hybrid vibrational energy harvesting systems. J. Sound Vib. 330, 5583–5597 (2011)

    Article  Google Scholar 

  33. Hamdi, M., Belhaq, M.: Energy harvesting in a hybrid piezoelectric-electromagnetic harvester with time delay. In: Belhaq, M. (ed.) Recent Trends in Applied Nonlinear Mechanics and Physics, pp. 69–83. Springer, Cham (2018)

    Chapter  Google Scholar 

  34. Stratonovich, R.L.: Selected Topics in the Theory of Random Noise, vol. 1, 2. Gordon and Breach, New York (1963)

    Google Scholar 

  35. Zhu, W.Q.: Recent developments and applications of the stochastic averaging method in random vibration. Appl. Mech. Rev. 49, S72–S80 (1996)

    Article  Google Scholar 

  36. Wang, G., Liao, W.H., Yang, B., Wang, X., Xu, W., Li, X.: Dynamic and energetic characteristics of a bistable piezoelectric vibration energy harvester with an elastic magnifier. Mech. Syst. Signal Process. 105, 427–446 (2018)

    Article  Google Scholar 

  37. Just, W., Reckwerth, D., Möckel, J., Reibold, E., Benner, H.: Delayed feedback control of periodic orbits in autonomous systems. Phys. Rev. Lett. 81(3), 562 (1998)

    Article  Google Scholar 

  38. Pyragas, K.: Control of chaos via an unstable delayed feedback controller. Phys. Rev. Lett. 86, 2265 (2001)

    Article  Google Scholar 

  39. Fiedler, B., Flunkert, V., Georgi, M., Hövel, P., Schöll, E.: Refuting the odd number limitation of time-delayed feedback control. Phys. Rev. Lett. 98, 114101 (2007)

    Article  Google Scholar 

  40. Sipahi, R., Niculescu, S.I., Abdallah, C.T., Michiels, W., Gu, K.: Stability and stabilization of systems with time delay. IEEE Control Syst. 31(1), 38–65 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  41. Leonov, G.A., Moskvin, A.V.: Stabilizing unstable periodic orbits of dynamical systems using delayed feedback control with periodic gain. Int. J. Dyn. Control 6(2), 601–608 (2018)

    Article  MathSciNet  Google Scholar 

  42. Khasminskii, R.Z.: On the principle of averaging for the Itô stochastic differential equation. Kybernetika 3, 260–279 (1968)

    Google Scholar 

  43. Risken, H.: The Fokker–Planck Equation: Methods of Solution and Applications. Springer, Berlin (1992)

    MATH  Google Scholar 

  44. Li, H., Qin, W.: Dynamics and coherence resonance of a laminated piezoelectric beam for energy harvesting. Nonlinear Dyn. 81(4), 1751–1757 (2015)

    Article  MathSciNet  Google Scholar 

  45. Xiao, S., Jin, Y.: Response analysis of the piezoelectric energy harvester under correlated white noise. Nonlinear Dyn. 90(3), 2069–2082 (2017)

    Article  Google Scholar 

  46. Hu, G.: Stochastic Force and Nonlinear System. Shanghai Science and Technology Education Publishing House, Shanghai (1994)

    Google Scholar 

  47. Gardiner, C.W.: Handbook of Stochastic Methods. Springer, Berlin (1985)

    Google Scholar 

  48. Zheng, R., Nakano, K., Hu, H., Su, D., Cartmell, M.P.: An application of stochastic resonance for energy harvesting in a bistable vibrating system. J. Sound Vib. 333(12), 2568–2587 (2014)

    Article  Google Scholar 

  49. Kim, H., Tai, W.C., Zhou, S., Zuo, L.: Stochastic resonance energy harvesting for a rotating shaft subject to random and periodic vibrations: influence of potential function asymmetry and frequency sweep. Smart Mater. Struct. 26(11), 115011 (2017)

    Article  Google Scholar 

  50. Lan, C., Qin, W.: Enhancing ability of harvesting energy from random vibration by decreasing the potential barrier of bistable harvester. Mech. Syst. Signal Process. 85, 71–81 (2017)

    Article  Google Scholar 

  51. Mei, D.C., Du, L.C., Wang, C.J.: The effects of time delay on stochastic resonance in a bistable system with correlated noises. J. Stat. Phys. 137(4), 625–638 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  52. Zeng, C., Zhang, C., Zeng, J., Liu, R., Wang, H.: Noise-enhanced stability and double stochastic resonance of active Brownian motion. J. Stat. Mech. 2015(8), P08027 (2015)

    Article  MathSciNet  Google Scholar 

  53. Zhang, Y., Zheng, R., Nakano, K.: Feasibility of energy harvesting from a rotating tire based on the theory of stochastic resonance. J. Phys. Conf. Ser. 557, 012097 (2014)

    Article  Google Scholar 

  54. Madoka, K., Ryo, T., Takashi, H.: Active and reactive power in stochastic resonance for energy harvesting. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 98(7), 1537–1539 (2015)

    Google Scholar 

  55. Zheng, R., Nakano, K., Hu, H., Su, D., Cartmell, M.P.: An application of stochastic resonance for energy harvesting in a bistable vibrating system. J. Sound Vib. 333, 2568–2587 (2014)

    Article  Google Scholar 

  56. Zhang, Y., Zheng, R., Kaizuka, T., Su, D., Nakano, K., Cartmell, M.P.: Broadband vibration energy harvesting by application of stochastic resonance from rotational environments. Eur. Phys. J. Spec. Top. 224, 2687–2701 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from the Natural Science Foundation of China Granted Nos. 11572096, and 11732006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingjie Cao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, T., Cao, Q. Time delay improves beneficial performance of a novel hybrid energy harvester. Nonlinear Dyn 96, 1511–1530 (2019). https://doi.org/10.1007/s11071-019-04868-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-04868-z

Keywords

Navigation