Skip to main content
Log in

Fixed-time stabilization control for port-Hamiltonian systems

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the locally fixed-time and globally fixed-time stabilization problems for the port-Hamiltonian (PH) systems via the interconnection and damping assignment passivity-based control technique are discussed. The definitions of fixed-time stability region (or region of attraction) and fixed-time stability boundary are given in this paper. From this starting point, the sufficient condition of globally fixed-time attractivity of a prespecified locally fixed-time stability region is obtained. Combining the locally fixed-time stability and the globally fixed-time attractivity of a prespecified locally fixed-time stability region, the globally fixed-time stabilization problem for PH system is effectively solved. Furthermore, the globally fixed-time control scheme independent of locally fixed-time stability region has also been derived by constructing a novel Lyapunov function. A illustrative example shows that the results obtained in this paper work very well in fixed-time control design of PH systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Couenne, F., Jallut, C., Maschke, M.B., Tayakout, M., Breedveld, P.: Bond graph for dynamic modelling in chemical engineering. Chem. Eng. Process. Process Intensif. 47, 1994–2003 (2008)

    Article  MATH  Google Scholar 

  2. Jeltsema, D., Scherpen, J.: Multi-domain modeling of nonlinear networks and systems: energy- and power-based perspectives. IEEE Control Syst. Mag. 29(4), 28–59 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Macchelli, A.: Port Hamiltonian systems: a unified approach for modeling and control finite and infinite dimensional physical systems. Ph.D. thesis, University of Bologna-DEIS, Bologna, Italy (2003)

  4. Dörfler, F., Johnsen, J., Allgöwer, F.: An introduction to interconnection and damping assignment passivity-based control in process engineering. J. Process Control. 19(9), 1413–1426 (2009)

    Article  Google Scholar 

  5. Fujimoto, K., Sugie, T.: Canonical transformations and stabilization of generalized Hamiltonian systems. Syst. Control Lett. 42, 217–227 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cai, L., He, Y., Wu, M.: On the effects of desired damping matrix and desired Hamiltonian function in the matching equation for port-Hamiltonian systems. Nonlinear Dyn. 72, 91–99 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ortega, R., Spong, M.W., Gómez-Estern, F., Blankenstein, G.: Stabilization of a class of under actuated mechanical systems via interconnection and damping. IEEE Trans. Autom. Control. 47(8), 1218–1233 (2002)

    Article  MATH  Google Scholar 

  8. Ortega, R., van der Schaft, A.J., Maschke, B., Escobar, G.: Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38(4), 585–596 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bhat, S.P., Bernstein, D.S.: Finite-time stability of continuous autonomous systems. SIAM J. Control Optim. 38, 751–766 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dorato, P.: Short time stability in linear time-varying systems. In: Proceedings of the IRE International Convention Record Part 4, New York, pp. 83-87 (1961)

  11. Moulay, E., Perruquetti, W.: Finite time stability and stabilization of a class of continuous systems. J. Math. Anal. Appl. 323, 1430–1443 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Haimo, V.T.: Finite time controllers. SIAM J. Control Optim. 24, 760–770 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  13. Liu, X., Ho, D.W.C., Cao, J., Xu, W.: Discontinuous observers design for finite-time consensus of multiagent systems with external disturbances. IEEE Trans. Neural Netw. Learn. Syst. 28(11), 2826–2830 (2017)

    Article  MathSciNet  Google Scholar 

  14. Liu, X., Cao, J., Yu, W., Song, Q.: Nonsmooth finite-time synchronization of switched coupled neural networks. IEEE Trans. Cybern. 46(10), 2360–2371 (2016)

    Article  Google Scholar 

  15. Xu, C., Yang, X., Lu, J., Feng, J., Alsaadi, F.E., Hayat, T.: Finite-time synchronization of networks via quantized intermittent pinning control. IEEE Trans. Cybern. (2017). https://doi.org/10.1109/TCYB.2017.2749248

    Google Scholar 

  16. Yang, X., Cao, J., Xu, C., Feng, J.: Finite-time stabilization of switched dynamical networks with quantized couplings via quantized controller. Sci. China Technol. Sci. 61(2), 299–308 (2018)

    Article  Google Scholar 

  17. Sun, L., Feng, G., Wang, Y.: Finite-time stabilization and \(H_\infty \) control for a class of nonlinear Hamiltonian descriptor systems with application to affine nonlinear descriptor systems. Automatica 50, 2090–2097 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wang, Y., Feng, G.: Finite-time stabilization of port-controlled Hamiltonian systems with application to nonlinear affine systems. In: Proceedings of the 2008 American Control Conference, Washington, USA, pp. 1202–1207 (2008)

  19. Yang, R., Wang, Y.: Finite-time stability analysis and \(H_\infty \) control for a class of nonlinear time-delay Hamiltonian systems. Automatica 49, 390–401 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cruz-Zavala, E., Moreno, J.A., Fridman, L.: Uniform second-order sliding mode observer for mechanical systems. In: Proceedings of the International Workshop on Variable Structure Systems, pp. 14–19 (2010)

  21. Engel, R., Kreisselmeier, G.: A continuous-time observer which converges in finite time. IEEE Trans. Autom. Control. 47, 1202–1204 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. James, M.: Finite time observers and observability. In: Proceedings of the CDC, pp. 770–771 (1990)

  23. Raff, T., Allgöwer, F.: An observer that converges in finite time due to measurement-based state updates. In: Proceedings of the IFAC World Congress, pp. 2693–2695 (2008)

  24. Polyakov, A.: Nonlinear feedback design for fixed-time stabilization of linear control systems. IEEE Trans. Autom. Control 57, 2106–2110 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Polyakov, A., Efimov, D., Perruquetti, W.: Finite-time and fixed-time stabilization: implicit Lyapunov function approach. Automatica 51, 332–340 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Polyakov, A., Efimov, D., Perruquetti, W.: Robust stabilization of MIMO systems in finite/fixed time. Int. J. Robust Nonlinear Control 26, 69–90 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Parsegov, S., Polyakov, A., Shcherbakov, P.: Nonlinear fixed-time control protocol for uniform allocation of agents on a segment. In: Proceedings of the 51st IEEE Conference on Decision and Control, Maui, Hawaii, USA, pp. 7732–7737 (2012)

  28. Parsegov, S., Polyakov, A., Shcherbakov, P.: Fixed-time consensus algorithm for multi-agent systems with integrator dynamics. In: Proceedings of the 4th IFAC Workshop Distributed Estimation and Control in Networked System, Koblenz, Germany, pp. 110–115 (2013)

  29. Zuo, Z.Y., Tie, L.: A new class of finite-time nonlinear consensus protocols for multi-agent systems. Int. J. Control 87(2), 363–370 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zuo, Z.Y., Tie, L.: Distributed robust finite-time nonlinear consensus protocols for multi-agent systems. Int. J. Syst. Sci. 47, 1366–1375 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zuo, Z.Y.: Non-singular fixed-time terminal sliding mode control of non-linear systems. IET Control Theory Appl. 9(4), 545–552 (2015)

    Article  MathSciNet  Google Scholar 

  32. Wan, Y., Cao, J., Wen, G., Yu, W.: Robust fixed-time synchronization of delayed Cohen–Grossberg neural networks. Neural Netw. 73, 86–94 (2016)

    Article  MATH  Google Scholar 

  33. Yang, X., Lam, J., Ho, D.W.C., Feng, Z.: Fixed-time synchronization of complex networks with impulsive effects via non-chattering control. IEEE Trans. Autom. Control 62(11), 5511–5521 (2018)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Nature Science Foundation of China (Grant Nos. 61472331, 61772434), in part by the National Key Research and Development Program of China (Grant No. 2016YFB0800601), in part by the Fundamental Research Funds for the Central Universities (Grant No. XDJK2015C078) and in part by the Talents of Science and Technology promote plan, Chongqing Science and Technology Commission. The authors have declared that no conflict of interest exists, and this paper has been approved by all authors for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Liao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Liao, X. Fixed-time stabilization control for port-Hamiltonian systems. Nonlinear Dyn 96, 1497–1509 (2019). https://doi.org/10.1007/s11071-019-04867-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-04867-0

Keywords

Navigation