Skip to main content
Log in

Leader-following consensus of nonlinear fractional-order multi-agent systems over directed networks

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates the leader-following consensus of nonlinear fractional-order multi-agent systems where the linear part is depicted by the general linear dynamics on directed networks with the order p belonging to \(p \in (0,1]\) and \(p \in (1,2)\), respectively. By utilizing the Mittag-Leffler function, the Laplace transform, and the inequality technique, some algebraic-type consensus tracking criteria relying on the coupling strength, the coupling gain matrix and the network structure are obtained. It is interesting to find that the leader-following consensus can be attained by only using the position information among the agent and its neighbors for \(p \in (0,1]\) and \(p \in (1,2)\). The theoretical results are illustrated by several numerical simulation examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Quan, Y., Chen, W., Wu, Z., Li, P.: Distributed fault detection and isolation for leader–follower multi-agent systems with disturbances using observer techniques. Nonlinear Dyn. 93, 863–871 (2018)

    Article  MATH  Google Scholar 

  2. Long, M., Su, H., Liu, B.: Group controllability of two-time-scale multi-agent networks. J. Frankl. Inst. 355, 6045–6061 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  3. Su, H., Wu, H., Chen, X., Chen, M.Z.Q.: Positive edge consensus of complex networks. IEEE Trans. Syst. Man Cybern. Syst. 48, 2242–2250 (2018)

    Article  Google Scholar 

  4. Wu, H., Su, H.: Discrete-time positive edge-consensus for undirected and directed nodal networks. IEEE Trans. Circuits Syst. II Express Briefs 65, 221–225 (2018)

    Article  Google Scholar 

  5. Su, H., Wu, H., Chen, X.: Observer-based discrete-time nonnegative edge synchronization of networked systems. IEEE Trans. Neural Netw. Learn. Syst. 28, 2446–2455 (2017)

    Article  MathSciNet  Google Scholar 

  6. Long, M., Su, H., Liu, B.: Second-order controllability of two-time-scale multi-agent systems. Appl. Math. Comput. 343, 299–313 (2019)

    MathSciNet  Google Scholar 

  7. Ren, H., Peng, Y., Deng, F., Zhang, C.: Impulsive pinning control algorithm of stochastic multi-agent systems with unbounded distributed delays. Nonlinear Dyn. 92, 1453–1467 (2018)

    Article  MATH  Google Scholar 

  8. Su, H., Wu, H., Lam, J.: Positive edge-consensus for nodal networks via output feedback. IEEE Trans. Autom. Control. 64, 1244–1249 (2019)

  9. Wang, Y., Yang, W., Xiao, J., Zeng, Z.: Impulsive multisynchronization of coupled multistable neural networks with time-varying delay. IEEE Trans. Neural Netw. Learn. Syst. 28, 1560–1571 (2017)

    Article  MathSciNet  Google Scholar 

  10. Su, H., Liu, Y., Zeng, Z.: Second-order consensus for multiagent systems via intermittent sampled position data control. IEEE Trans. Cybern. https://doi.org/10.1109/TCYB.2018.2879327 (to be published)

  11. Li, X., Su, H., Chen, M.Z.Q.: Flocking of networked Euler Lagrange systems with uncertain parameters and time-delays under directed graphs. Nonlinear Dyn. 85, 415–424 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Su, H., Long, M., Zeng, Z.: Controllability of two-time-scale discrete-time multiagent systems. IEEE Trans. Cybern. https://doi.org/10.1109/TCYB.2018.2884498 (to be published)

  13. Wang, Y., Liu, X., Xiao, J., Shen, Y.: Output formation-containment of interacted heterogeneous linear systems by distributed hybrid active control. Automatica 93, 26–32 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Su, H., Zhang, J., Chen, X.: A stochastic sampling mechanism for time-varying formation of multiagent systems with multiple leaders and communication delays. IEEE Trans. Neural Netw. Learn. Syst. https://doi.org/10.1109/TNNLS.2019.2891259 (to be published)

  15. Wang, X., Su, H.: Self-triggered leader-following consensus of multi-agent systems with input time delay. Neurocomputing 330, 70–77 (2019)

    Article  Google Scholar 

  16. Su, H., Ye, Y., Qiu, Y., Cao, Y., Chen, M.Z.Q.: Semi-global output consensus for discrete-time switching networked systems subject to input saturation and external disturbances. IEEE Trans. Cybern. https://doi.org/10.1109/TCYB.2018.2859436 (to be published)

  17. Wang, Y., Yang, W., Xiao, J., Liu, Z.: Coordination of networked delayed singularly perturbed systems with antagonistic interactions and switching topologies. Nonlinear Dyn. 89, 741–754 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Torvik, P.J., Bagley, R.L.: On the appearance of the fractional derivative in the behavior of real materials. J. Appl. Mech. 51, 725–728 (1984)

    MATH  Google Scholar 

  19. Podlubny, I.: Fractional-order systems and \(PI^{\lambda } D^{\mu }\)-controllers. IEEE Trans. Autom. Control 44, 208–213 (1999b)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tavazoei, M.S., Haeri, M.: Limitations of frequency domain approximation for detecting chaos in fractional order systems. Nonlinear Anal. 69, 1299–1320 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999a)

    MATH  Google Scholar 

  22. Cao, Y., Li, Y., Ren, W., Chen, Y.: Distributed coordinative of networked fractional-order systems. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 40, 362–370 (2010)

    Article  Google Scholar 

  23. Sun, W., Li, Y., Li, C., Chen, Y.: Convergence speed of a fractional order consensus algorithm over undirected scale-free networks. Asian J. Control 15, 1–11 (2013)

    Article  MathSciNet  Google Scholar 

  24. Shen, J., Cao, J., Lu, J.: Consensus of fractional-order systems with non-uniform input and communication delays. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 226, 271–283 (2012)

    Article  Google Scholar 

  25. Shen, J., Cao, J.: Necessary and sufficient conditions for consensus of delayed fractional-order systems. Asian J. Control 14, 1690–1697 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhu, W., Li, W., Zhou, P., Yang, C.: Consensus of fractional-order multi-agent systems with linear models via observer-type protocol. Neurocomputing 230, 60–65 (2017)

    Article  Google Scholar 

  27. Bai, J., Wen, G., Rahman, A., Chu, X., Yu, Y.: Consensus with a reference state fractional-order multi-agent systems. Int. J. Syst. Sci. 47, 222–234 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Yu, W., Li, Y., Wen, G., Yu, X., Cao, J.: Observer design for tracking consensus in second-order multi-agent systems: fractional order less than two. IEEE Trans. Autom. Control 62, 894–900 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Yu, Z., Jiang, H., Hu, C., Yu, J.: Necessary and sufficient conditions for consensus of fractional-order multiagent systems via sampled-data control. IEEE Trans. Cybern. 47, 1892–1901 (2017)

    Article  Google Scholar 

  30. Ye, Y., Su, H., Sun, Y.: Event-triggered consensus tracking for fractional-order multi-agent systems with general linear models. Neurocomputing 315, 292–298 (2018)

    Article  Google Scholar 

  31. Ye, Y., Su, H.: Leader-following consensus of general linear fractional-order multi-agent systems with input delay via event-triggered control. Int. J. Robust Nonlinear Control 28, 5717–5729 (2018)

    Article  MATH  Google Scholar 

  32. Wang, J., Ma, Q., Chen, A., Liang, Z.: Pinning synchronization of fractional-order complex networks with Lipschitz-type nonlinear dynamics. ISA Trans. 57, 111–116 (2015)

    Article  Google Scholar 

  33. Wang, F., Yang, Y.: Leader-following exponential consensus of fractional order nonlinear multi-agents system with hybrid time-varying delay: a heterogeneous impulsive method. Physica A 482, 158–172 (2017)

    Article  MathSciNet  Google Scholar 

  34. Wang, F., Yang, Y.: Leader-following consensus of nonlinear fractional-order multi-agent systems via event-triggered control. Int. J. Syst. Sci. 48, 571–577 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Gong, P.: Distributed tracking of heterogeneous nonlinear fractional-order multi-agent systems with an unknown leader. J. Frankl. Inst. 354, 2226–2244 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. Gong, P., Lan, W.: Adaptive robust tracking control for uncertain nonlinear fractional-order multi-agent systems with directed topologies. Automatica 92, 92–99 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  37. Gong, P., Lan, W.: Adaptive robust tracking control for multiple unknown fractional-order nonlinear systems. IEEE Trans. Cybern. 49, 1365–1376 (2019)

  38. Hong, Y., Chen, G., Gao, L.: Tracking control for multi-agent consensus with an active leader and variable topology. Automatica 42, 1177–1182 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  39. Caputo, M.: Linear models of dissipation whose Q is almost frequency independent. Geophys. J. Int. 13, 529–539 (1967)

    Article  Google Scholar 

  40. Wen, X., Wu, Z., Lu, J.: Stability analysis of a class of nonlinear fractional-order systems. IEEE Trans. Circuits Syst. II Express Briefs 52, 1178–1182 (2008)

    Article  Google Scholar 

  41. Corduneanu, C.: Principles of Differential and Integral Equations, vol. 1991, pp. 336–337. Chelsea Pub Co, New York (1977)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 61873318 and 61473129, the Natural Science Foundation of Hubei Province of China under Grant No. 2018CFA058, the Wuhan Morning Light Plan of Youth Science and Technology under Grant No. 2017050304010288, the Fundamental Research Funds for the Central Universities [Grant Number HUST: 2017KFYXJJ178], and the Program for HUST Academic Frontier Youth Team.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Housheng Su.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, Y., Su, H. Leader-following consensus of nonlinear fractional-order multi-agent systems over directed networks. Nonlinear Dyn 96, 1391–1403 (2019). https://doi.org/10.1007/s11071-019-04861-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-04861-6

Keywords

Navigation