Skip to main content
Log in

Nonlinear oscillations of a pendulum cable with the effects of the friction and the radius of the support

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The dynamics of a pendulum cable with a special constitutive law subjected to a time-dependent velocity is investigated. The Coulomb friction between the cable of pendulum and its support taking into account the effects of the support is considered. To predict system behaviors, the multiple scales method is endowed leading to spot the evolution of the angle and the length of the pendulum. The study permits to enlighten the effects of velocity, friction and the radius of the wheel support on the overall system response and its stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Irvine, H.M.: Cable structures. Earthq. Eng. Struct. Dyn. 10(2), 347–347 (1982)

    Google Scholar 

  2. Treyssede, F.: Free linear vibrations of cables under thermal stress. J. Sound Vib. 327(1–2), 1–8 (2009)

    Article  Google Scholar 

  3. Rega, G.: Nonlinear vibrations of suspended cables–part I: modeling and analysis. Appl. Mech. Rev. 57, 443–478 (2004)

    Article  Google Scholar 

  4. Sofi, A.: Nonlinear in-plane vibrations of inclined cables carrying moving oscillators. J. Sound Vib. 332(7), 1712–1724 (2013)

    Article  Google Scholar 

  5. Gattulli, V., Di Fabio, F., Luongo, A.: Simple and double Hopf bifurcations in aeroelastic oscillators with Tuned Mass Dampers. J. Frankl. Inst. 338(2–3), 187–201 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Skutch, R.: Uber die bewegung eines gespannten fadens, welcher gezwungen ist, durch zwei feste punkte, mit einer constanten geshwindigkeit zu gehen, und zwischen denselben in transversal-schwingungen von geriger amplitude versetzt wird. Annalen der Physik une Chemie, 61 (1897)

  7. Simpson, A.: On the oscillatory motions of translating elastic cables. J. Sound Vib. 20, 177–189 (1972)

    Article  MATH  Google Scholar 

  8. Triantafyllou, M.S.: The dynamics of translating cables. J. Sound Vib. 103(2), 171–182 (1985)

    Article  Google Scholar 

  9. Gaiko, N.: Transversal waves and vibrations in axially moving continua, doctoral thesis. TU Delft Mathematical Physics. (2017). https://doi.org/10.4233/uuid:6d1d906e-f37e-4e3f-85de-bf8fe68bd8d8

    Google Scholar 

  10. Belyakov, Anton O, Seyranian, A .P., Luongo, A.: Dynamics of the pendulum with periodically varying length. Phys. D Nonlinear Phenom. 238, 1589–1597 (2009)

    Article  MATH  Google Scholar 

  11. Babaz, M., Jezequel, L., Lamarque, C.-H., Perrard, P.: Unusual expression of tension of a massless cable with application to the oscillations of a mass suspended to a cable with a variable length. J. Sound Vib. 363, 446–459 (2016)

    Article  Google Scholar 

  12. Bechtel, S.A., Vohra, S., Jacob, K.I., Carlson, C.D.: The stretching and slipping of belts and fibers on pulleys. J. Appl. Mech. 67, 197–206 (2000)

    Article  MATH  Google Scholar 

  13. Usabiaga, H., Ezkurra, M., Madoz, M.A., Pagalday, J.M.: Experimental test for measuring the normal and tangential line contact pressure between wire rope and sheaves. Exp. Tech. 32, 34–43 (2008)

    Article  Google Scholar 

  14. Westin, C, Irani, R.A.: Cable-Pulley interaction with dynamic wrap angle using the absolute nodal coordinate formulation. In: Proceedings of the fourth International Conference of Control, Dynamic Systems, and Robotics (CDSR’17) (2017)

  15. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, Hoboken (1995)

    Book  MATH  Google Scholar 

  16. Acary, V., Brogliato, B.: Numerical Methods for Nonsmooth Dynamical Systems: Applications in Mechanics and Electronics. Springer Verlag (2008)

  17. Ben Brahim, N., Rousselet B.: Double scale analysis of periodic solutions of some non linear vibrating systems. HAL (2013)

  18. Lamarque, C.-H., Ture Savadkoohi, A., Etcheverria, E., Dimitrijevic, Z.: Multi-scale dynamics of two couples nonsmooth systems. Int. J. Bifurc. Chaos 22, 18 (2011)

    MATH  Google Scholar 

  19. Meriam, J.L., Kraige, L.G.: Engineering Mechanics-Statics, 7th edn. Wiley, SI Version (2011)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the following organizations for supporting this research: (1) The “Ministère de la transition écologique et solidaire” and (2) LABEX CELYA (ANR-10-LABX-0060) of the “Université de Lyon” within the program “Investissement d’Avenir” (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Bertrand.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

Expression of functions

$$\begin{aligned} \varTheta _{1,1}= & {} \theta _0 \nonumber \\ \varTheta _{1,2}= & {} 0\nonumber \\ \varTheta _{2,1}= & {} 0\nonumber \\ \varTheta _{2,2}= & {} -\frac{7 v_0 \theta _0}{8 \omega _0l_0}\nonumber \\ \varTheta _{3,1}= & {} \frac{1}{192} \theta _0 \nonumber \\&\times \left( \frac{45 v_0^2}{l_0^2 \omega _0^2}\right. \left. -\frac{\theta _0^2 \left( 2880 \omega _0^6-1012 \omega _0^4+137 \omega _0^2+11\right) }{\left( 1-4 \omega _0^2\right) ^2}\right) \nonumber \\&+\,\mu \frac{\theta _0^2 \left( 10 \omega _0^2-3\right) }{2 l_0 \left( 4 \omega _0^2-1\right) }T^* +\frac{\theta _0^2 \left( 22 \omega _0^2-7\right) }{6 l_0 \left( 4 \omega _0^2-1\right) } R^*\nonumber \\ \varTheta _{3,2}= & {} 0 \end{aligned}$$
(34)
$$\begin{aligned} \xi _{2,1}= & {} -\frac{3 \omega _0^4 \theta _0^2 l_0}{4\omega _0^2-1}+ \mu \frac{\omega _0^2\theta _0 }{ \omega _0^2-1}T^* +\frac{\omega _0^2 \theta _0}{\omega _0^2 - 1}R^* \nonumber \\ \xi _{2,2}= & {} 0 \nonumber \\ \xi _{2,3}= & {} \frac{3 \theta _0^2 l_0 \omega _0^2 \left( 16 \omega _0^2-2 \omega _0-7\right) }{64 \omega _0^2-16} -R\theta _0 -\mu \theta _0 T^*\nonumber \\ \xi _{3,1}= & {} \mu ^2 \frac{\theta _0^2 \omega _0^2}{1-4 \omega _0^2} T^* \nonumber \\ \xi _{3,2}= & {} -\frac{3 \theta _0^2 v_0 \omega _0^4 \left( 12 \omega _0^2-23\right) }{8 \left( 1-4 \omega _0^2\right) ^2} \nonumber \\&\quad -\, \mu \frac{\theta _0 v_0 \omega _0^2 \left( \omega _0^2+7\right) }{8 l_0 \left( \omega _0^2-1\right) ^2}T^*\nonumber \\&\quad \ -\,\frac{\theta _0 v_0 \omega _0^2 \left( \omega _0^2+23\right) }{8 l_0 \left( \omega _0^2-1\right) ^2}R^*\nonumber \\ \xi _{3,3}= & {} \mu ^2\frac{ \theta _0^2 }{4 }T^* \end{aligned}$$
(35)
$$\begin{aligned} c_1(t_{0})= & {} \frac{\theta _0^2 \left( \left( -9 \omega _0^4 \cos (t_{0})+5 \omega _0^4-7 \omega _0^2+2\right) \cos (\omega _0t_{0} )\right) }{3 l_0 (\omega _0-1) (\omega _0+1) \left( 4 \omega _0^2-1\right) } \nonumber \\&\quad +\,\frac{\theta _0^2 \left( \left( 2 \omega _0^2+1\right) \cos (2 \omega _0t_{0} )+3\right) }{6 l_0 (\omega _0-1) (\omega _0+1)} \nonumber \\&\quad +\, \frac{\theta _0^2 \left( 6 \left( \omega _0^2-1\right) \omega _0^3 \sin (t_{0}) \sin (\omega _0t_{0} )\right) }{3 l_0 (\omega _0-1) (\omega _0+1) \left( 4 \omega _0^2-1\right) } \end{aligned}$$
(36)
$$\begin{aligned} c_2(t_{0})= & {} \frac{\theta _0 \sin (\omega _0t_{0})}{32 \omega _0\left( 4 \omega _0^2-1\right) l_0^2} \left( 2 \theta _0^2 \omega _0^2 \left( 24 \omega _0^4-11 \omega _0^2-1\right) l_0^2\right. \nonumber \\&\quad \left. +\,\left( 15-60 \omega _0^2\right) v_0^2\right) \nonumber \\&\quad -\,(\mu T^*+R^*)\frac{\theta _0^2 \omega _0\sin (\omega _0t_{0} )}{2 l_0} \end{aligned}$$
(37)
$$\begin{aligned} c_3(t_{0})= & {} \frac{1}{8} \theta _0 v_0 \omega _0\left[ \frac{2 (R^*+\mu T^*) (\sin (\omega _0t_{0} ) -\omega _0\sin (t_{0}))}{l_0}\right. \nonumber \\&\left. \times (\omega _0^2-1)\right. \nonumber \\&\left. \qquad -\,\frac{3 \theta _0 \omega _0^2 (\sin (2 \omega _0t_{0} )-2 \omega _0\sin (t_{0}))}{4 \omega _0^2-1} \right] \end{aligned}$$
(38)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertrand, C., Ture Savadkoohi, A. & Lamarque, CH. Nonlinear oscillations of a pendulum cable with the effects of the friction and the radius of the support. Nonlinear Dyn 96, 1303–1315 (2019). https://doi.org/10.1007/s11071-019-04854-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-04854-5

Keywords

Navigation