Skip to main content

Advertisement

Log in

Tailoring multistable vibrational energy harvesters for enhanced performance: theory and numerical investigation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This study exposes the analytical and numerical analyses of multistable systems for energy harvesting purposes. More specifically, this paper aims at providing appropriate conditions for ensuring equal potential barrier to go from one well to another whatever the order of multistability. This therefore allows optimal operations through either potential barrier lowering or vibration magnitude increase. Then, such analytical and numerical results are incorporated into a general dynamic model and evaluated. Results show a significant magnification of the frequency bandwidth while keeping the same maximal velocity magnitude. Hence, such a unified approach would permit designing efficient vibrational energy harvester working on a wide frequency band at low excitation levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. According to the order of multistability: well for n even and peak for n odd

References

  1. Selvan, K.V., Mohamed Ali, M.S.: Micro-scale energy harvesting devices: review of methodological performances in the last decade. Renew. Sustain. Energy Rev. 54, 1035–1047 (2016)

    Article  Google Scholar 

  2. Shaikh, F.K., Zeadally, S.: Energy harvesting in wireless sensor networks: a comprehensive review. Renew. Sustain. Energy Rev. 55, 1041–1054 (2016)

    Article  Google Scholar 

  3. Priya, S., Song, H.-C., Zhou, Y., Varghese, R., Chopra, A., Kim, S.-G., Kanno, I., Wu, L., Ha, D.S., Ryu, J., Polcawich, R.G.: A review on piezoelectric energy harvesting: materials, methods, and circuits. Energy Harvest. Syst. 4(1), 3–39 (2017)

    Google Scholar 

  4. Cottone, F., Vocca, H., Gammaitoni, L.: Nonlinear energy harvesting. Phys. Rev. Lett. 102(8), 080601 (2009)

    Article  Google Scholar 

  5. Erturk, A., Hoffmann, J., Inman, D.J.: A piezomagnetoelastic structure for broadband vibration energy harvesting. Appl. Phys. Lett. 94(25), 128130 (2009)

    Article  Google Scholar 

  6. Sebald, G., Kuwano, H., Guyomar, D., Ducharne, B.: Simulation of a Duffing oscillator for broadband piezoelectric energy harvesting. Smart Mater. Struct. 20(10), 102001 (2011)

    Article  Google Scholar 

  7. Sebald, G., Kuwano, H., Guyomar, D., Ducharne, B.: Experimental Duffing oscillator for broadband piezoelectric energy harvesting. Smart Mater. Struct. 20(7), 075022 (2011)

    Article  Google Scholar 

  8. Daqaq, M.F., Masana, R., Erturk, A., Quinn, D.D.: On the role of nonlinearities in vibratory energy harvesting: a critical review and discussion. Appl. Mech. Rev. 66, 40801 (2014)

    Article  Google Scholar 

  9. Tran, N., Ghayesh, M.H., Arjomandi, M.: Ambient vibration energy harvesters: A review on nonlinear techniques for performance enhancement. Int. J. Eng. Sci. 127, 162–185 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. Erturk, A., Inman, D.J.: Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling. J. Sound Vib. 330(10), 2339–2353 (2011)

    Article  Google Scholar 

  11. Harne, R.L., Wang, K.W.: A review of the recent research on vibration energy harvesting via bistable systems. Smart Mater. Struct. 22, 023001 (2013)

    Article  Google Scholar 

  12. Liu, W., Badel, A., Formosa, F., Wu, Y.-P., Agbossou, A.: Novel piezoelectric bistable oscillator architecture for wideband vibration energy harvesting. Smart Mater. Struct. 22(3), 035013 (2013)

    Article  Google Scholar 

  13. Zhou, S., Cao, J., Lin, J.: Theoretical analysis and experimental verification for improving energy harvesting performance of nonlinear monostable energy harvesters. Nonlinear Dyn. 86, 1599–1611 (2016)

    Article  Google Scholar 

  14. Liu, W., Formosa, F., Badel, A.: Optimization study of a piezoelectric bistable generator with doubled voltage frequency using harmonic balance method. J. Intell. Mater. Syst. Struct. 28(5), 671–686 (2017)

    Article  Google Scholar 

  15. Huguet, T., Badel, A., Lallart, M.: Exploiting bistable oscillator subharmonics for magnified broadband vibration energy harvesting. Appl. Phys. Lett. 111(17), 173905 (2017)

    Article  Google Scholar 

  16. Zhou, Z., Qin, W., Zhu, P.: Harvesting acoustic energy by coherence resonance of a bi-stable piezoelectric harvester. Energy 126, 527–534 (2017)

    Article  Google Scholar 

  17. Huguet, T., Badel, A., Druet, O., Lallart, M.: Drastic bandwidth enhancement of bistable energy harvesters: study of subharmonic behaviors and their stability robustness. Appl. Energy 226, 607–617 (2018)

    Article  Google Scholar 

  18. Zhou, S., Cao, J., Inman, D.J., Lin, J., Liu, S., Wang, Z.: Broadband tristable energy harvester: modeling and experiment verification. Appl. Energy 133, 33–39 (2014)

    Article  Google Scholar 

  19. Kim, P., Seok, J.: Dynamic and energetic characteristics of a tri-stable magnetopiezoelastic energy harvester. Mech. Mach. Theory 94, 41–63 (2015)

    Article  Google Scholar 

  20. Li, H., Qin, W., Lan, C., Deng, W., Zhou, Z.: Dynamics and coherence resonance of tri-stable energy harvesting system. Smart Mater. Struct. 25(1), 015001 (2015)

    Google Scholar 

  21. Cao, J., Zhou, S., Wang, W., Lin, J.: Influence of potential well depth on nonlinear tristable energy harvesting. Appl. Phys. Lett. 106, 173903 (2015)

    Article  Google Scholar 

  22. Kim, P., Son, D., Seok, J.: Triple-well potential with a uniform depth: Advantageous aspects in designing a multi-stable energy harvester. Appl. Phys. Lett. 108(24), 243902 (2016)

    Article  Google Scholar 

  23. Zhou, S., Cao, J., Inman, D.J., Lin, J., Li, D.: Harmonic balance analysis of nonlinear tristable energy harvesters for performance enhancement. J. Sound Vib. 373, 223–235 (2016)

    Article  Google Scholar 

  24. Panyam, M., Daqaq, M.F.: Characterizing the effective bandwidth of tri-stable energy harvesters. J. Sound Vib. 386, 336–358 (2017)

    Article  Google Scholar 

  25. Zhou, S., Zuo, L.: Nonlinear dynamic analysis of asymmetric tristable energy harvesters for enhanced energy harvesting. Commun. Nonlinear Sci. Numer. Simul. 61, 271–284 (2018)

    Article  MathSciNet  Google Scholar 

  26. Kim, P., Seok, J.: A multi-stable energy harvester: dynamic modeling and bifurcation analysis. J. Sound Vib. 333, 5525–5547 (2014)

    Article  Google Scholar 

  27. Zhou, Z., Qin, W., Zhu, P.: Energy harvesting in a quad-stable harvester subjected to random excitation. AIP Adv. 6, 025022 (2016)

    Article  Google Scholar 

  28. Zhou, Z., Qin, W., Zhu, P.: A broadband quad-stable energy harvester and its advantages over bi-stable harvester: simulation and experiment verification. Mech. Syst. Sig. Proc. 84, 158–168 (2017)

    Article  Google Scholar 

  29. Zhou, Z., Qin, W., Yang, Y., Zhu, P.: Improving efficiency of energy harvesting by a novel penta-stable configuration. Sens. Act. A Phys. 265, 297–305 (2017)

    Article  Google Scholar 

  30. Yan, B., Zhou, S., Litak, G.: Nonlinear analysis of tristable energy harvesters with a resonant circuit for performance enhancement. Int. J. Bifurc. Chaos 28(7), 1850092 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. Harne, R.L., Thota, M., Wang, K.W.: Concise and high-fidelity predictive criteria for maximizing performance and robustness of bistable energy harvesters. Appl. Phys. Lett. 102, 053903 (2013)

    Article  Google Scholar 

  32. Guyomar, D., Badel, A., Lefeuvre, E., Richard, C.: Toward energy harvesting using active materials and conversion improvement by nonlinear processing. IEEE Trans. Ultrason. Ferroelectr. Freq. Cont. 52(4), 584–595 (2005)

    Article  Google Scholar 

  33. Sari, I., Balkan, T., Külah, H.: An electromagnetic micro power generator for wideband environmental vibrations. Sens. Act. A: Phys. 145/146, 405–413 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11802237), the Fundamental Research Funds for the Central Universities (Grant No. G2018KY0306), as well as the Agence Nationale de la Recherche through Grant ANR-15-CE22-0015-01 (BESTMEMS Project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mickaël Lallart.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest in preparing this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lallart, M., Zhou, S., Yan, L. et al. Tailoring multistable vibrational energy harvesters for enhanced performance: theory and numerical investigation. Nonlinear Dyn 96, 1283–1301 (2019). https://doi.org/10.1007/s11071-019-04853-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-04853-6

Keywords

Navigation