Advertisement

Nonlinear Dynamics

, Volume 96, Issue 2, pp 1115–1131 | Cite as

Transient dynamic analysis of cracked structures with multiple contact pairs using generalized HSNC

  • Meng-Hsuan Tien
  • Kiran D’SouzaEmail author
Original Paper
  • 74 Downloads

Abstract

The development of efficient computational methods for cracked structures is critical in the fields of civil, mechanical, and aerospace engineering since the influence of cracks on structural dynamics can play an important role in design, prognosis, and health monitoring. The nonlinearity caused by the intermittent contact on the crack surfaces typically excludes the use of fast linear methods, without which the computation of the dynamics of complex cracked structures becomes very challenging. In this paper, an efficient computational scheme for predicting both the transient and steady-state responses of cracked structures with multiple contact pairs is introduced. The new algorithm is referred to as the generalized hybrid symbolic–numeric computational (HSNC) method. The generalized HSNC method extends the original HSNC method, which was recently developed for bilinear systems, to general piecewise-linear nonlinear systems. This work also combines the HSNC with the \(\hbox {X}-\hbox {X}_{r}\) method, a reduced-order modeling technique for cracked structures, to efficiently predict the dynamics of complex structures with cracks. The generalized HSNC approach is based on the idea that the nonlinear response of a cracked structure with multiple contact pairs can be obtained by combining linear responses of the system in each of its linear states. These linear responses can be symbolically expressed as functions of the initial conditions at starting time points in each time range where the system behaves linearly. The transition time where the system switches from one linear state to another is found using a nonlinear optimization solver with the initial values provided by an incremental search process. The method is able to individually track status of each contact pair; therefore, it can be used to predict the dynamics of the system when the crack surfaces are not completely open or closed. Moreover, both the transient and steady-state responses of complex cracked structures under various forcing conditions can be captured by the new method. The generalized HSNC method provides a flexible computational framework that is several orders of magnitude faster than traditional numerical integration methods. The dynamics of a spring–mass system and cantilever beam models that contain one crack and multiple cracks are investigated using the proposed method.

Keywords

Piecewise-linear nonlinearity Cracked structure Reduced-order modeling Hybrid symbolic–numeric computation 

Notes

Compliance with ethical standards

Conflict of interest

The authors declared that they have no conflict of interest.

References

  1. 1.
    Allemang, R.: Investigation of Some Multiple Input/Output Frequency Response Experimental Modal Analysis Techniques. Ph.D .Thesis, University of Cincinnati, Mechanical Engineering Department (1980)Google Scholar
  2. 2.
    Bennighof, J.K., Lehoucq, R.B.: An automated multilevel substructuring method for eigenspace computation in linear elastodynamics. SIAM J. Sci. Comput. 25(6), 2084–2106 (2004).  https://doi.org/10.1137/S1064827502400650 MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bovsunovsky, A., Surace, C.: Non-linearities in the vibrations of elastic structures with a closing crack: a state of the art review. Mech. Syst. Signal Process. 62–63, 129–148 (2015).  https://doi.org/10.1016/j.ymssp.2015.01.021 CrossRefGoogle Scholar
  4. 4.
    Brake, M.: A hybrid approach for the modal analysis of continuous systems with discrete piecewise-linear constraints. J. Sound Vib. 330(13), 3196–3221 (2011).  https://doi.org/10.1016/j.jsv.2011.01.028 CrossRefGoogle Scholar
  5. 5.
    Brownjohn, J.M.W., De Stefano, A., Xu, Y.L., Wenzel, H., Aktan, A.E.: Vibration-based monitoring of civil infrastructure: challenges and successes. J. Civ. Struct. Health Monit. 1(3), 79–95 (2011).  https://doi.org/10.1007/s13349-011-0009-5 CrossRefGoogle Scholar
  6. 6.
    Burlayenko, V.N., Sadowski, T.: Influence of skin/core debonding on free vibration behavior of foam and honeycomb cored sandwich plates. Int. J. Non-Linear Mech. 45, 959–968 (2009).  https://doi.org/10.1016/j.ijnonlinmec.2009.07.002 CrossRefGoogle Scholar
  7. 7.
    Castanier, M.P., Óttarsson, G., Pierre, C.: A reduced order modeling technique for mistuned bladed disks. J. Vib. Acoust. 119(3), 439–447 (1997).  https://doi.org/10.1115/1.2889743 CrossRefGoogle Scholar
  8. 8.
    Craig, R.R., Bampton, M.C.C.: Coupling of substructures for dynamic analyses. AIAA J. 6(7), 1313–1319 (1968)CrossRefzbMATHGoogle Scholar
  9. 9.
    Della, C.N., Shu, D.: Vibration of delaminated composite laminates: a review. Appl. Mech. Rev. 60(1), 1–20 (2007).  https://doi.org/10.1115/1.2375141 CrossRefGoogle Scholar
  10. 10.
    Dimarogonas, A.D.: Vibration of cracked structures: a state of the art review. Eng. Fract. Mech. 55(5), 831–857 (1996)CrossRefGoogle Scholar
  11. 11.
    Doebling, S.W., Farrar, C.R., Prime, M.B.: A summary review of vibration-based damage identification methods. Shock Vib. Dig. 30(2), 91–105 (1998)CrossRefGoogle Scholar
  12. 12.
    Doebling, S.W., Farrar, C.R., Prime, M.B., Shevitz, D.W.: Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: a literature review. In: Los Alamos National Laboratory Report LA-13070-MS. Los Alamos, NM (1996)Google Scholar
  13. 13.
    Dormand, J., Prince, P.: A family of embedded Runge–Kutta formulae. J. Comput. Appl. Math. 6(1), 19–26 (1980).  https://doi.org/10.1016/0771-050X(80)90013-3 MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    D’Souza, K., Epureanu, B.I.: Multiple augmentations of nonlinear systems and generalized minimum rank perturbations for damage detection. J. Sound Vib. 316(1–5), 101–121 (2008).  https://doi.org/10.1016/j.jsv.2008.02.018 CrossRefGoogle Scholar
  15. 15.
    D’Souza, K., Epureanu, B.I., Pascual, M.: Forecasting bifurcations from large perturbation recoveries in feedback ecosystems. PLOS ONE 10(9), 1–19 (2015).  https://doi.org/10.1371/journal.pone.0137779 Google Scholar
  16. 16.
    Ewins, D.J.: Modal Testing: Theory and Practice. Research Studies Press, Taunton (1984)Google Scholar
  17. 17.
    Friswell, M.I., Penny, J.E.T., Garvey, S.D.: Using linear model reduction to investigate the dynamics of structures with local non-linearities. Mech. Syst. Signal Process. 9(3), 317–328 (1995)CrossRefGoogle Scholar
  18. 18.
    Guyan, R.J.: Reduction of stiffness and mass matrices. AIAA J. 3(2), 380 (1965).  https://doi.org/10.2514/3.2874 CrossRefGoogle Scholar
  19. 19.
    Hein, H., Feklistova, L.: Computationally efficient delamination detection in composite beams using Haar wavelets. Mech. Syst. Signal Process. 25(6), 2257–2270 (2011).  https://doi.org/10.1016/j.ymssp.2011.02.003 CrossRefGoogle Scholar
  20. 20.
    Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4, 303–320 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Irons, B.: Structural eigenvalue problems: elimination of unwanted variables. AIAA J. 3(5), 961–962 (1965).  https://doi.org/10.2514/3.3027 CrossRefGoogle Scholar
  22. 22.
    Jaumouill, V., Sinou, J.J., Petitjean, B.: An adaptive harmonic balance method for predicting the nonlinear dynamic responses of mechanical systems–application to bolted structures. J. Sound Vib. 329(19), 4048–4067 (2010).  https://doi.org/10.1016/j.jsv.2010.04.008 CrossRefGoogle Scholar
  23. 23.
    Jung, C., D’Souza, K., Epureanu, B.I.: Nonlinear amplitude approximation for bilinear systems. J. Sound Vib. 333(13), 2909–19 (2014)CrossRefGoogle Scholar
  24. 24.
    Kim, J.G., Lee, P.S.: An accurate error estimator for guyan reduction. Comput. Methods Appl. Mech. Eng. 278, 1–19 (2014).  https://doi.org/10.1016/j.cma.2014.05.002 MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Kim, J.G., Park, Y.J., Lee, G.H., Kim, D.N.: A general model reduction with primal assembly in structural dynamics. Comput. Methods Appl. Mech. Eng. 324, 1–28 (2017).  https://doi.org/10.1016/j.cma.2017.06.007 MathSciNetCrossRefGoogle Scholar
  26. 26.
    Kurstak, E., D’Souza, K.: Multistage blisk and large mistuning modeling using fourier constraint modes and PRIME. J. Eng. Gas Turbines Power Trans. ASME 140(7), 072505 (2018).  https://doi.org/10.1115/1.4038613 CrossRefGoogle Scholar
  27. 27.
    Ma, O., Wang, J.: Model order reduction for impact-contact dynamics simulations of flexible manipulators. Robotica 25(04), 397–407 (2007)CrossRefGoogle Scholar
  28. 28.
    Marinescu, O., Epureanu, B., Banu, M.: Reduced order models of mistuned cracked bladed disks. J. Vib. Acoust. 133(5), 051,014 (2011)CrossRefGoogle Scholar
  29. 29.
    MATLAB: version: R2017b. The MathWorks Inc., Natick, Massachusetts (2017)Google Scholar
  30. 30.
    Newmark, N.M.: A method of computation for structural dynamics. J. Eng. Mech. 85(EM3), 67–94 (1959)Google Scholar
  31. 31.
    Poudou, O.: Modeling and analysis of the dynamics of dry-friction-damped structural systems. Ph.D. thesis, The University of Michigan (2007)Google Scholar
  32. 32.
    Saito, A., Castanier, M.P., Pierre, C., Poudou, O.: Efficient nonlinear vibration analysis of the forced response of rotating cracked blades. J. Comput. Nonlinear Dyn. Trans. ASME 4(1), 011,005 (2009)CrossRefGoogle Scholar
  33. 33.
    Shampine, L.F., Reichelt, M.W.: The matlab ode suite. SIAM J. Sci. Comput. 18(1), 1–22 (1997).  https://doi.org/10.1137/S1064827594276424 MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Shiiryayev, O.V., Slater, J.C.: Detection of fatigue cracks using random decrement signatures. Struct. Health Monit. 9(4), 347–360 (2010)CrossRefGoogle Scholar
  35. 35.
    Theodosiou, C., Natsiavas, S.: Dynamics of finite element structural models with multiple unilateral constraints. Int. J. Non-Linear Mech. 44(4), 371–382 (2009).  https://doi.org/10.1016/j.ijnonlinmec.2009.01.006 CrossRefzbMATHGoogle Scholar
  36. 36.
    Tien, M.H., D’Souza, K.: A generalized bilinear amplitude and frequency approximation for piecewise-linear nonlinear systems with gaps or prestress. Nonlinear Dyn. 88(4), 2403–2416 (2017).  https://doi.org/10.1007/s11071-017-3385-5 CrossRefGoogle Scholar
  37. 37.
    Tien, M.H., D’Souza, K.: Analyzing bilinear systems using a new hybrid symbolic-numeric computational method. J. Vibr. Acoust. 141(3), 031008 (2019).  https://doi.org/10.1115/1.4042520 CrossRefGoogle Scholar
  38. 38.
    Tien, M.H., Hu, T., D’Souza, K.: Generalized bilinear amplitude approximation and X-Xr for modeling cyclically symmetric structures with cracks. Journal of Vibration and Acoustics 140(4), 041,012–041,012–10 (2018).  https://doi.org/10.1115/1.4039296
  39. 39.
    Tien, M.H., Hu, T., D’Souza, K.: Efficient analysis of cyclic symmetric structures with mistuning and cracks. In: AIAA Scitech 2019 Forum, pp. AIAA 2019–0489 (2019).  https://doi.org/10.2514/6.2019-0489
  40. 40.
    Zhou, T., Xu, J., Sun, Z.: Dynamic analysis and diagnosis of a cracked rotor. J. Vib. Acoust. Trans. ASME 123, 534–539 (2001)CrossRefGoogle Scholar
  41. 41.
    Zucca, S., Epureanu, B.I.: Reduced order models for nonlinear dynamic analysis of structures with intermittent contacts. J. Vib. Control 24(12), 2591–2604 (2018).  https://doi.org/10.1177/1077546316689214 MathSciNetCrossRefGoogle Scholar
  42. 42.
    Zucca, S., Firrone, C.M., Gola, M.M.: Numerical assessment of friction damping at turbine blade root joints by simultaneous calculation of the static and dynamic contact loads. Nonlinear Dyn. 67(3), 1943–1955 (2012).  https://doi.org/10.1007/s11071-011-0119-y MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Mechanical and Aerospace EngineeringThe Ohio State UniversityColumbusUSA

Personalised recommendations