Abstract
Many technical applications, such as brakes and metal forming processes, are affected by anisotropic frictional behavior, where the magnitude and the direction of the friction force are dependent on the sliding direction. Existing dry friction laws do not sufficiently describe all relevant macroscopic aspects of anisotropic friction, and the influence on the dynamics of mechanical systems is largely unknown. Furthermore, previous experimental work on anisotropic friction is limited and the fact that the friction force is not always acting parallel to the sliding direction is often neglected. In this paper, an anisotropic dry friction law with the capability to describe the nonsmooth behavior of stick and slip and allowing for non-convex but star-shaped sets of admissible friction forces is formulated using tools from convex analysis. The formulation of the friction law as normal cone inclusion enables the direct implementation in numerical time-stepping schemes. The stability of systems with anisotropic friction is studied and an eigenvalue analysis reveals that the anisotropic friction law is in theory capable of causing anisotropic friction-induced instability. In addition, experimental setups for detailed investigations of the frictional behavior are described. The measurements reveal complex shaped force reservoirs and confirm the validity of the presented friction law. Finally, it is shown that the presented friction law leads to a more accurate prediction of the motion of nonsmooth mechanical systems.
This is a preview of subscription content,
to check access.


























References
Coulomb, C.A.: Théorie des machines simples en ayant égard au frottement de leurs parties et à la roideur des cordages. Bachelier, Paris (1821)
Popova, E., Popov, V.L.: The research works of Coulomb and Amontons and generalized laws of friction. Friction 3(2), 183–190 (2015)
Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)
van de Vrande, B.L., van Campen, D.H., de Kraker, A.: An approximate analysis of dry-friction-induced stick-slip vibrations by a smoothing procedure. Nonlinear Dyn. 19(2), 159–171 (1999)
Glocker, Ch.: Set-Valued Force Laws: Dynamics of Non-Smooth Systems. Lecture Notes in Applied Mechanics, vol. 1. Springer, Berlin (2001)
Filippov, A.F.: Differential Equations with Discontinuous Right hand Sides. Kluwer Academic Publishers, Dordrecht (1988)
Rockafellar, R.T.: Convex Analysis. Princeton Landmarks in Mathematics. Princeton University Press, Princeton (1970)
Rockafellar, R.T., Wets, R.J.B.: Variational Analysis. Springer, Berlin (1998)
Aubin, J.P., Cellina, A.: Differential Inclusions: Set-Valued Maps and Viability Theory. Grundlehren der mathemati-schen Wissenschaften, vol. 264. Springer, Berlin (1984)
Clarke, F.H., Ledyaev, Y.S., Stern, R.J., Wolenski, P.R.: Nonsmooth Analysis and Control Theory. Graduate Texts in Mathematics, vol. 178. Springer, New York (1998)
Jean, M.: The non-smooth contact dynamics method. Comput. Method Appl. Mech. Eng. 177(3), 235–257 (1999)
Moreau, J.J.: Unilateral contact and dry friction in finite freedom dynamics. In: Moreau, J.J., Panagiotopoulos, P.D. (eds.) Nonsmooth Mechanics and Applications. CISM Courses and Lectures, vol. 302, pp. 1–82. Springer, Wien (1988)
Acary, V., Brogliato, B.: Numerical Methods for Nonsmooth Dynamical Systems: Applications in Mechanics and Electronics. Lecture Notes in Applied and Computational Mechanics, vol. 35. Springer, Berlin (2008)
Leine, R.I., Nijmeijer, H.: Dynamics and Bifurcations of Non-Smooth Mechanical Systems. Lecture Notes in Applied and Computational Mechanics, vol. 18. Springer, Berlin (2004)
Zmitrowicz, A.: Models of kinematics dependent anisotropic and heterogeneous friction. Int. J. Solids. Struct. 43(14), 4407–4451 (2006)
Menezes, P.L., Kishore, K.S.V., Lovell, M.R.: Role of surface texture, roughness, and hardness on friction during unidirectional sliding. Tribol. Lett. 41(1), 1–15 (2011)
Saha, P.K., Wilson, W.R., Timsit, R.S.: Influence of surface topography on the frictional characteristics of 3104 aluminum alloy sheet. Wear 197(1–2), 123–129 (1996)
Liu, X., Liewald, M., Becker, D.: Effects of rolling direction and lubricant on friction in sheet metal forming. J. Tribol. 131(4), 042101 (2009). 1–8
Rabinowicz, E.: Direction of the friction force. Nature 179, 1073 (1957)
Halaunbrenner, M.: Directional effects in friction. Wear 3(6), 421–425 (1960)
Konyukhov, A., Vielsack, P., Schweizerhof, K.: On coupled models of anisotropic contact surfaces and their experimental validation. Wear 264(7), 579–588 (2008)
Tapia, F., Le Tourneau, D., Géminard, J.C.: Anisotropic friction: assessment of force components and resulting trajectories. EPJ Tech. Instrum. 3(1), 1–10 (2016)
Goyal, S.: Planar sliding of a rigid body with dry friction: limit surfaces and dynamics of motion. Ph.D. thesis, Cornell University (1989)
Michalowski, R., Mróz, Z.: Associated and non-associated sliding rules in contact friction problems. Arch. Mech. 30(3), 259–276 (1978)
Mróz, Z., Stupkiewicz, S.: An anisotropic friction and wear model. Int. J. Solids Struct. 31(8), 1113–1131 (1994)
de Saxcé, G., Feng, Z.Q.: New inequality and functional for contact with friction: the implicit standard material approach. J. Struct. Mech. 19(3), 301–325 (1991)
Hjiaj, M., Feng, Z.Q., de Saxcé, G., Mróz, Z.: Three-dimensional finite element computations for frictional contact problems with non-associated sliding rule. Int. J. Numer. Method Eng. 60(12), 2045–2076 (2004)
Zmitrowicz, A.: Mathematical descriptions of anisotropic friction. Int. J. Solids Struct. 25(8), 837–862 (1989)
He, Q.C., Curnier, A.: Anisotropic dry friction between two orthotropic surfaces undergoing large displacements. Eur. J. Mech. A/Solids 12(5), 631–666 (1993)
Transeth, A.A., Leine, R.I., Glocker, Ch., Pettersen, K.Y.: 3-D snake robot motion: nonsmooth modeling, simulations, and experiments. IEEE Trans. Robot. 24(2), 361–376 (2008)
Arnold, P.D.: Analyse und Konzeption von Bobfahrwerken. Ph.D. thesis, ETH Zurich (2013)
Feeny, B., Guran, A., Hinrichs, N., Popp, K.: A historical review on dry friction and stick-slip phenomena. Appl. Mech. Rev. 51(5), 321–342 (1998)
Ibrahim, R.A.: Friction-induced vibration, chatter, squeal, and chaos, part ii: dynamics and modeling. ASME Appl. Mech. Rev. 47(7), 227–253 (1994)
Spurr, R.T.: A theory of brake squeal. Proc. Inst. Mech. Eng. Autom. Div. 15(1), 33–52 (1961)
Hoffmann, N., Fischer, M., Allgaier, R., Gaul, L.: A minimal model for studying properties of the mode-coupling type instability in friction induced oscillations. Mech. Res. Commun. 29(4), 197–205 (2002)
Wallaschek, J., Hach, K.H., Stolz, U., Mody, P.: A survey of the present state of friction modelling in the analytical and numerical investigation of brake noise generation. In: Proceedings of the ASME Vibration Conference, Las Vegas, Nevada (1999)
Kinkaid, N.M., O’Reilly, O.M., Papadopoulos, P.: Automotive disc brake squeal. J. Sound Vib. 267(1), 105–166 (2003)
von Wagner, U., Hochlenert, D., Hagedorn, P.: Minimal models for disk brake squeal. J. Sound Vib. 302(3), 527–539 (2007)
Ghazaly, N.M., El-Sharkawy, M., Ahmed, I.: A review of automotive brake squeal mechanisms. J. Mech. Des. Vib. 1(1), 5–9 (2013)
Hetzler, H.: Zur Stabilität von Systemen bewegter Kontinua mit Reibkontakten am Beispiel des Bremsenquietschens. Ph.D. thesis, Universität Karlsruhe (TH) (2008)
Brogliato, B.: Nonsmooth Mechanics: Models, Dynamics and Control, 3rd edn. Springer, Switzerland (2016)
Leine, R.I., van de Wouw, N.: Stability and Convergence of Mechanical Systems with Unilateral Constraints. Lecture Notes in Applied and Computational Mechanics, vol. 36. Springer, Berlin (2008)
Demyanov, V.F., Stavroulakis, G.E., Polyakova, L.N., Panagiotopoulos, P.D.: Quasidifferentiability and Nonsmooth Modelling in Mechanics, Engineering and Economics, Nonconvex Optimization and Its Applications, vol. 10. Springer, Dordrecht (1996)
Möller, M., Leine, R.I., Glocker, Ch.: An efficient approximation of orthotropic set-valued force laws of normal cone type. In: Proceedings of the 7th Euromech Solid Mechanics Conference, Lisbon, Portugal (2009)
Clarke, F.H., Aubin, J.P.: Monotone invariant solutions to differential inclusions. J. Lond. Math. Soc. 2(2), 357–366 (1977)
Alart, P., Curnier, A.: A mixed formulation for frictional contact problems prone to Newton like solution methods. Comput. Method Appl. Mech. Eng. 92(3), 353–375 (1991)
Moreau, J.J.: Application of convex analysis to some problems of dry friction. In: Zorski, H. (ed.) Trends in Applications of Pure Mathematics to Mechanics, vol. 2, pp. 263–280. Pitman Publishing Ltd, London (1979)
Baumann, M.: Synchronization of nonsmooth mechanical systems with impulsive motion. Ph.D. thesis, ETH Zurich (2017)
Leine, R.I., Glocker, Ch.: A set-valued force law for spatial Coulomb–Contensou friction. Eur. J. Mech. A/Solids 22(2), 193–216 (2003)
Saito, M., Fukaya, M., Iwasaki, T.: Modeling, analysis, and synthesis of serpentine locomotion with a multilink robotic snake. IEEE Control Syst. Mag. 22(1), 64–81 (2002)
Rempfler, G.S., Glocker, Ch.: A bobsleigh simulator software. Multibody Syst. Dyn. 36(3), 257–278 (2016)
Liewald, M., Wagner, S., Becker, D.: New approaches on Coulomb’s friction model for anisotropic sheet metal forming applications. In: Proceedings of the 9th ESAFORM Conference on Material Forming, Glasgow (2006)
Hjiaj, M., Feng, Z.Q., de Saxcé, G., Mróz, Z.: On the modelling of complex anisotropic frictional contact laws. Int. J. Eng. Sci. 42(10), 1013–1034 (2004)
Hjiaj, M., de Saxcé, G., Mróz, Z.: A variational inequality-based formulation of the frictional contact law with a non-associated sliding rule. Eur. J. Mech. A/Solids 21(1), 49–59 (2002)
de Saxcé, G., Feng, Z.Q.: The bipotential method: a constructive approach to design the complete contact law with friction and improved numerical algorithms. Math. Comput. Model. 28(4), 225–245 (1998)
Zmitrowicz, A.: Constitutive modelling of anisotropic phenomena of friction, wear and frictional heat. Studia i Materiały, vol. 381/1342/93 Instytut Maszyn Przepływowych PAN, Gdańsk (1993)
Walker, S.V., Leine, R.I.: Modeling and numerical simulation of anisotropic dry friction with non-convex friction force reservoir. In: Proceedings of the 4th Joint International Conference on Multibody System Dynamics (IMSD 2016), Montréal, Canada (2016)
Leine, R.I., Brogliato, B., Nijmeijer, H.: Periodic motion and bifurcations induced by the Painlevé paradox. Eur. J. Mech. A/Solids 21(5), 869–896 (2002)
Leine, R.I., van Campen, D.H., de Kraker, A., van den Steen, L.: Stick-slip vibrations induced by alternate friction models. Nonlinear Dyn. 16(1), 41–54 (1998)
Popp, K., Stelter, P.: Stick-slip vibrations and chaos. Philos. Trans. Phys. Sci. Eng. 332, 89–105 (1990)
Hetzler, H., Schwarzer, D., Seemann, W.: Analytical investigation of steady-state stability and Hopf-bifurcations occurring in sliding friction oscillators with application to low-frequency disc brake noise. Commun. Nonlin. Sci. Numer. Simul. 12(1), 83–99 (2007)
Hoffmann, N., Gaul, L.: Effects of damping on mode-coupling instability in friction induced oscillations. Zeitschrift für Angewandte Mathematik und Mechanik 83(8), 524–534 (2003)
Sinou, J.J., Jezequel, L.: Mode coupling instability in friction-induced vibrations and its dependency on system parameters including damping. Eur. J. Mech. A/Solids 26(1), 106–122 (2007)
Hoffmann, N., Gaul, L.: A sufficient criterion for the onset of sprag-slip oscillations. Arch. Appl. Mech. 73(9), 650–660 (2004)
Painlevé, P.: Sur les lois du frottement de glissement. Comptes Rendu des Séances de l’Academie des Sciences 121, 112–115 (1895)
Ouyang, H., Mottershead, J.E., Cartmell, M.P., Friswell, M.I.: Friction-induced parametric resonances in discs: effect of a negative friction–velocity relationship. J. Sound. Vib. 209(2), 251–264 (1998)
Bigoni, D., Noselli, G.: Experimental evidence of flutter and divergence instabilities induced by dry friction. J. Mech. Phys. Solids 59(10), 2208–2226 (2011)
Brogliato, B., Goeleven, D.: Well-posedness, stability and invariance results for a class of multivalued Lur’e dynamical systems. Nonlin. Anal. Theory Method Appl. 74(1), 195–212 (2011)
Müller, P.C.: Stabilität und Matrizen: Matrizenverfahren in der Stabilitätstheorie linearer dynamischer Systeme. Springer, Berlin (1977)
Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice Hall, Upper Saddle River (2002)
Walker, S.V., Leine, R.I.: Anisotropic dry friction with non-convex force reservoirs: modeling and experiments. In: Proceedings of the 9th European Nonlinear Dynamics Conference (ENOC 2017), Budapest, Hungary (2017)
Rhaiem, S., Dammak, M., Shirazi-Adl, A., Mesfar, W., Maalej, A.: Combined experimental and finite element studies of anisotropic friction. J. Mater. Sci. Technol. 20, 11–14 (2004)
Singh, R., Melkote, S.N., Hashimoto, F.: Frictional response of precision finished surfaces in pure sliding. Wear 258(10), 1500–1509 (2005)
Yu, C., Wang, Q.J.: Friction anisotropy with respect to topographic orientation. Sci. Rep. 2(988), 1–6 (2012)
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Walker, S.V., Leine, R.I. Set-valued anisotropic dry friction laws: formulation, experimental verification and instability phenomenon. Nonlinear Dyn 96, 885–920 (2019). https://doi.org/10.1007/s11071-019-04829-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11071-019-04829-6