Skip to main content
Log in

Set-valued anisotropic dry friction laws: formulation, experimental verification and instability phenomenon

Nonlinear Dynamics Aims and scope Submit manuscript

Cite this article

Abstract

Many technical applications, such as brakes and metal forming processes, are affected by anisotropic frictional behavior, where the magnitude and the direction of the friction force are dependent on the sliding direction. Existing dry friction laws do not sufficiently describe all relevant macroscopic aspects of anisotropic friction, and the influence on the dynamics of mechanical systems is largely unknown. Furthermore, previous experimental work on anisotropic friction is limited and the fact that the friction force is not always acting parallel to the sliding direction is often neglected. In this paper, an anisotropic dry friction law with the capability to describe the nonsmooth behavior of stick and slip and allowing for non-convex but star-shaped sets of admissible friction forces is formulated using tools from convex analysis. The formulation of the friction law as normal cone inclusion enables the direct implementation in numerical time-stepping schemes. The stability of systems with anisotropic friction is studied and an eigenvalue analysis reveals that the anisotropic friction law is in theory capable of causing anisotropic friction-induced instability. In addition, experimental setups for detailed investigations of the frictional behavior are described. The measurements reveal complex shaped force reservoirs and confirm the validity of the presented friction law. Finally, it is shown that the presented friction law leads to a more accurate prediction of the motion of nonsmooth mechanical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

References

  1. Coulomb, C.A.: Théorie des machines simples en ayant égard au frottement de leurs parties et à la roideur des cordages. Bachelier, Paris (1821)

    Google Scholar 

  2. Popova, E., Popov, V.L.: The research works of Coulomb and Amontons and generalized laws of friction. Friction 3(2), 183–190 (2015)

    Article  Google Scholar 

  3. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)

    Book  MATH  Google Scholar 

  4. van de Vrande, B.L., van Campen, D.H., de Kraker, A.: An approximate analysis of dry-friction-induced stick-slip vibrations by a smoothing procedure. Nonlinear Dyn. 19(2), 159–171 (1999)

    Article  MATH  Google Scholar 

  5. Glocker, Ch.: Set-Valued Force Laws: Dynamics of Non-Smooth Systems. Lecture Notes in Applied Mechanics, vol. 1. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  6. Filippov, A.F.: Differential Equations with Discontinuous Right hand Sides. Kluwer Academic Publishers, Dordrecht (1988)

    Book  MATH  Google Scholar 

  7. Rockafellar, R.T.: Convex Analysis. Princeton Landmarks in Mathematics. Princeton University Press, Princeton (1970)

    Book  MATH  Google Scholar 

  8. Rockafellar, R.T., Wets, R.J.B.: Variational Analysis. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  9. Aubin, J.P., Cellina, A.: Differential Inclusions: Set-Valued Maps and Viability Theory. Grundlehren der mathemati-schen Wissenschaften, vol. 264. Springer, Berlin (1984)

    Book  MATH  Google Scholar 

  10. Clarke, F.H., Ledyaev, Y.S., Stern, R.J., Wolenski, P.R.: Nonsmooth Analysis and Control Theory. Graduate Texts in Mathematics, vol. 178. Springer, New York (1998)

    MATH  Google Scholar 

  11. Jean, M.: The non-smooth contact dynamics method. Comput. Method Appl. Mech. Eng. 177(3), 235–257 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Moreau, J.J.: Unilateral contact and dry friction in finite freedom dynamics. In: Moreau, J.J., Panagiotopoulos, P.D. (eds.) Nonsmooth Mechanics and Applications. CISM Courses and Lectures, vol. 302, pp. 1–82. Springer, Wien (1988)

    Chapter  Google Scholar 

  13. Acary, V., Brogliato, B.: Numerical Methods for Nonsmooth Dynamical Systems: Applications in Mechanics and Electronics. Lecture Notes in Applied and Computational Mechanics, vol. 35. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  14. Leine, R.I., Nijmeijer, H.: Dynamics and Bifurcations of Non-Smooth Mechanical Systems. Lecture Notes in Applied and Computational Mechanics, vol. 18. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  15. Zmitrowicz, A.: Models of kinematics dependent anisotropic and heterogeneous friction. Int. J. Solids. Struct. 43(14), 4407–4451 (2006)

    Article  MATH  Google Scholar 

  16. Menezes, P.L., Kishore, K.S.V., Lovell, M.R.: Role of surface texture, roughness, and hardness on friction during unidirectional sliding. Tribol. Lett. 41(1), 1–15 (2011)

    Article  Google Scholar 

  17. Saha, P.K., Wilson, W.R., Timsit, R.S.: Influence of surface topography on the frictional characteristics of 3104 aluminum alloy sheet. Wear 197(1–2), 123–129 (1996)

    Article  Google Scholar 

  18. Liu, X., Liewald, M., Becker, D.: Effects of rolling direction and lubricant on friction in sheet metal forming. J. Tribol. 131(4), 042101 (2009). 1–8

    Article  Google Scholar 

  19. Rabinowicz, E.: Direction of the friction force. Nature 179, 1073 (1957)

    Article  Google Scholar 

  20. Halaunbrenner, M.: Directional effects in friction. Wear 3(6), 421–425 (1960)

    Article  Google Scholar 

  21. Konyukhov, A., Vielsack, P., Schweizerhof, K.: On coupled models of anisotropic contact surfaces and their experimental validation. Wear 264(7), 579–588 (2008)

    Article  Google Scholar 

  22. Tapia, F., Le Tourneau, D., Géminard, J.C.: Anisotropic friction: assessment of force components and resulting trajectories. EPJ Tech. Instrum. 3(1), 1–10 (2016)

    Article  Google Scholar 

  23. Goyal, S.: Planar sliding of a rigid body with dry friction: limit surfaces and dynamics of motion. Ph.D. thesis, Cornell University (1989)

  24. Michalowski, R., Mróz, Z.: Associated and non-associated sliding rules in contact friction problems. Arch. Mech. 30(3), 259–276 (1978)

    MATH  Google Scholar 

  25. Mróz, Z., Stupkiewicz, S.: An anisotropic friction and wear model. Int. J. Solids Struct. 31(8), 1113–1131 (1994)

    Article  MATH  Google Scholar 

  26. de Saxcé, G., Feng, Z.Q.: New inequality and functional for contact with friction: the implicit standard material approach. J. Struct. Mech. 19(3), 301–325 (1991)

    MathSciNet  Google Scholar 

  27. Hjiaj, M., Feng, Z.Q., de Saxcé, G., Mróz, Z.: Three-dimensional finite element computations for frictional contact problems with non-associated sliding rule. Int. J. Numer. Method Eng. 60(12), 2045–2076 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zmitrowicz, A.: Mathematical descriptions of anisotropic friction. Int. J. Solids Struct. 25(8), 837–862 (1989)

    Article  MATH  Google Scholar 

  29. He, Q.C., Curnier, A.: Anisotropic dry friction between two orthotropic surfaces undergoing large displacements. Eur. J. Mech. A/Solids 12(5), 631–666 (1993)

    MathSciNet  MATH  Google Scholar 

  30. Transeth, A.A., Leine, R.I., Glocker, Ch., Pettersen, K.Y.: 3-D snake robot motion: nonsmooth modeling, simulations, and experiments. IEEE Trans. Robot. 24(2), 361–376 (2008)

    Article  Google Scholar 

  31. Arnold, P.D.: Analyse und Konzeption von Bobfahrwerken. Ph.D. thesis, ETH Zurich (2013)

  32. Feeny, B., Guran, A., Hinrichs, N., Popp, K.: A historical review on dry friction and stick-slip phenomena. Appl. Mech. Rev. 51(5), 321–342 (1998)

    Article  Google Scholar 

  33. Ibrahim, R.A.: Friction-induced vibration, chatter, squeal, and chaos, part ii: dynamics and modeling. ASME Appl. Mech. Rev. 47(7), 227–253 (1994)

    Article  Google Scholar 

  34. Spurr, R.T.: A theory of brake squeal. Proc. Inst. Mech. Eng. Autom. Div. 15(1), 33–52 (1961)

    Google Scholar 

  35. Hoffmann, N., Fischer, M., Allgaier, R., Gaul, L.: A minimal model for studying properties of the mode-coupling type instability in friction induced oscillations. Mech. Res. Commun. 29(4), 197–205 (2002)

    Article  MATH  Google Scholar 

  36. Wallaschek, J., Hach, K.H., Stolz, U., Mody, P.: A survey of the present state of friction modelling in the analytical and numerical investigation of brake noise generation. In: Proceedings of the ASME Vibration Conference, Las Vegas, Nevada (1999)

  37. Kinkaid, N.M., O’Reilly, O.M., Papadopoulos, P.: Automotive disc brake squeal. J. Sound Vib. 267(1), 105–166 (2003)

    Article  Google Scholar 

  38. von Wagner, U., Hochlenert, D., Hagedorn, P.: Minimal models for disk brake squeal. J. Sound Vib. 302(3), 527–539 (2007)

    Article  Google Scholar 

  39. Ghazaly, N.M., El-Sharkawy, M., Ahmed, I.: A review of automotive brake squeal mechanisms. J. Mech. Des. Vib. 1(1), 5–9 (2013)

    Google Scholar 

  40. Hetzler, H.: Zur Stabilität von Systemen bewegter Kontinua mit Reibkontakten am Beispiel des Bremsenquietschens. Ph.D. thesis, Universität Karlsruhe (TH) (2008)

  41. Brogliato, B.: Nonsmooth Mechanics: Models, Dynamics and Control, 3rd edn. Springer, Switzerland (2016)

    Book  MATH  Google Scholar 

  42. Leine, R.I., van de Wouw, N.: Stability and Convergence of Mechanical Systems with Unilateral Constraints. Lecture Notes in Applied and Computational Mechanics, vol. 36. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  43. Demyanov, V.F., Stavroulakis, G.E., Polyakova, L.N., Panagiotopoulos, P.D.: Quasidifferentiability and Nonsmooth Modelling in Mechanics, Engineering and Economics, Nonconvex Optimization and Its Applications, vol. 10. Springer, Dordrecht (1996)

    Google Scholar 

  44. Möller, M., Leine, R.I., Glocker, Ch.: An efficient approximation of orthotropic set-valued force laws of normal cone type. In: Proceedings of the 7th Euromech Solid Mechanics Conference, Lisbon, Portugal (2009)

  45. Clarke, F.H., Aubin, J.P.: Monotone invariant solutions to differential inclusions. J. Lond. Math. Soc. 2(2), 357–366 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  46. Alart, P., Curnier, A.: A mixed formulation for frictional contact problems prone to Newton like solution methods. Comput. Method Appl. Mech. Eng. 92(3), 353–375 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  47. Moreau, J.J.: Application of convex analysis to some problems of dry friction. In: Zorski, H. (ed.) Trends in Applications of Pure Mathematics to Mechanics, vol. 2, pp. 263–280. Pitman Publishing Ltd, London (1979)

    Google Scholar 

  48. Baumann, M.: Synchronization of nonsmooth mechanical systems with impulsive motion. Ph.D. thesis, ETH Zurich (2017)

  49. Leine, R.I., Glocker, Ch.: A set-valued force law for spatial Coulomb–Contensou friction. Eur. J. Mech. A/Solids 22(2), 193–216 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  50. Saito, M., Fukaya, M., Iwasaki, T.: Modeling, analysis, and synthesis of serpentine locomotion with a multilink robotic snake. IEEE Control Syst. Mag. 22(1), 64–81 (2002)

    Article  Google Scholar 

  51. Rempfler, G.S., Glocker, Ch.: A bobsleigh simulator software. Multibody Syst. Dyn. 36(3), 257–278 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  52. Liewald, M., Wagner, S., Becker, D.: New approaches on Coulomb’s friction model for anisotropic sheet metal forming applications. In: Proceedings of the 9th ESAFORM Conference on Material Forming, Glasgow (2006)

  53. Hjiaj, M., Feng, Z.Q., de Saxcé, G., Mróz, Z.: On the modelling of complex anisotropic frictional contact laws. Int. J. Eng. Sci. 42(10), 1013–1034 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  54. Hjiaj, M., de Saxcé, G., Mróz, Z.: A variational inequality-based formulation of the frictional contact law with a non-associated sliding rule. Eur. J. Mech. A/Solids 21(1), 49–59 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  55. de Saxcé, G., Feng, Z.Q.: The bipotential method: a constructive approach to design the complete contact law with friction and improved numerical algorithms. Math. Comput. Model. 28(4), 225–245 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  56. Zmitrowicz, A.: Constitutive modelling of anisotropic phenomena of friction, wear and frictional heat. Studia i Materiały, vol. 381/1342/93 Instytut Maszyn Przepływowych PAN, Gdańsk (1993)

  57. Walker, S.V., Leine, R.I.: Modeling and numerical simulation of anisotropic dry friction with non-convex friction force reservoir. In: Proceedings of the 4th Joint International Conference on Multibody System Dynamics (IMSD 2016), Montréal, Canada (2016)

  58. Leine, R.I., Brogliato, B., Nijmeijer, H.: Periodic motion and bifurcations induced by the Painlevé paradox. Eur. J. Mech. A/Solids 21(5), 869–896 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  59. Leine, R.I., van Campen, D.H., de Kraker, A., van den Steen, L.: Stick-slip vibrations induced by alternate friction models. Nonlinear Dyn. 16(1), 41–54 (1998)

    Article  MATH  Google Scholar 

  60. Popp, K., Stelter, P.: Stick-slip vibrations and chaos. Philos. Trans. Phys. Sci. Eng. 332, 89–105 (1990)

    Article  MATH  Google Scholar 

  61. Hetzler, H., Schwarzer, D., Seemann, W.: Analytical investigation of steady-state stability and Hopf-bifurcations occurring in sliding friction oscillators with application to low-frequency disc brake noise. Commun. Nonlin. Sci. Numer. Simul. 12(1), 83–99 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  62. Hoffmann, N., Gaul, L.: Effects of damping on mode-coupling instability in friction induced oscillations. Zeitschrift für Angewandte Mathematik und Mechanik 83(8), 524–534 (2003)

    Article  MATH  Google Scholar 

  63. Sinou, J.J., Jezequel, L.: Mode coupling instability in friction-induced vibrations and its dependency on system parameters including damping. Eur. J. Mech. A/Solids 26(1), 106–122 (2007)

    Article  MATH  Google Scholar 

  64. Hoffmann, N., Gaul, L.: A sufficient criterion for the onset of sprag-slip oscillations. Arch. Appl. Mech. 73(9), 650–660 (2004)

    Article  MATH  Google Scholar 

  65. Painlevé, P.: Sur les lois du frottement de glissement. Comptes Rendu des Séances de l’Academie des Sciences 121, 112–115 (1895)

    MATH  Google Scholar 

  66. Ouyang, H., Mottershead, J.E., Cartmell, M.P., Friswell, M.I.: Friction-induced parametric resonances in discs: effect of a negative friction–velocity relationship. J. Sound. Vib. 209(2), 251–264 (1998)

    Article  Google Scholar 

  67. Bigoni, D., Noselli, G.: Experimental evidence of flutter and divergence instabilities induced by dry friction. J. Mech. Phys. Solids 59(10), 2208–2226 (2011)

    Article  Google Scholar 

  68. Brogliato, B., Goeleven, D.: Well-posedness, stability and invariance results for a class of multivalued Lur’e dynamical systems. Nonlin. Anal. Theory Method Appl. 74(1), 195–212 (2011)

    Article  MATH  Google Scholar 

  69. Müller, P.C.: Stabilität und Matrizen: Matrizenverfahren in der Stabilitätstheorie linearer dynamischer Systeme. Springer, Berlin (1977)

    Book  MATH  Google Scholar 

  70. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice Hall, Upper Saddle River (2002)

    MATH  Google Scholar 

  71. Walker, S.V., Leine, R.I.: Anisotropic dry friction with non-convex force reservoirs: modeling and experiments. In: Proceedings of the 9th European Nonlinear Dynamics Conference (ENOC 2017), Budapest, Hungary (2017)

  72. Rhaiem, S., Dammak, M., Shirazi-Adl, A., Mesfar, W., Maalej, A.: Combined experimental and finite element studies of anisotropic friction. J. Mater. Sci. Technol. 20, 11–14 (2004)

    Google Scholar 

  73. Singh, R., Melkote, S.N., Hashimoto, F.: Frictional response of precision finished surfaces in pure sliding. Wear 258(10), 1500–1509 (2005)

    Article  Google Scholar 

  74. Yu, C., Wang, Q.J.: Friction anisotropy with respect to topographic orientation. Sci. Rep. 2(988), 1–6 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Walker.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walker, S.V., Leine, R.I. Set-valued anisotropic dry friction laws: formulation, experimental verification and instability phenomenon. Nonlinear Dyn 96, 885–920 (2019). https://doi.org/10.1007/s11071-019-04829-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-04829-6

Keywords

Navigation