Trajectory-free approximation of phase space structures using the trajectory divergence rate

Abstract

This paper introduces the trajectory divergence rate, a scalar field which locally gives the instantaneous attraction or repulsion of adjacent trajectories. This scalar field may be used to find highly attracting or repelling invariant manifolds, such as slow manifolds, to rapidly approximate hyperbolic Lagrangian coherent structures, or to provide the local stability of invariant manifolds. This work presents the derivation of the trajectory divergence rate and the related trajectory divergence ratio for two-dimensional systems, investigates their properties, shows their application to several example systems, and presents their extension to higher dimensions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. 1.

    Aldridge, B.B., Haller, G., Sorger, P.K., Lauffenburger, D.A.: Direct Lyapunov exponent analysis enables parametric study of transient signalling governing cell behaviour. IEE Proc. Syst. Biol. 153(6), 425–432 (2006)

    Article  Google Scholar 

  2. 2.

    Ali, F., Menzinger, M.: On the local stability of limit cycles. Chaos Interdiscip. J. Nonlinear Sci. 9(2), 348–356 (1999)

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Allshouse, M.R., Thiffeault, J.L.: Detecting coherent structures using braids. Physica D 241(2), 95–105 (2012)

    Article  Google Scholar 

  4. 4.

    Ameli, S., Desai, Y., Shadden, S.C.: Development of an efficient and flexible pipeline for Lagrangian coherent structure computation. In: Bremer, P.-T., Hotz, I., Pascucci, V., Peikert, R. (eds.) Topological Methods in Data Analysis and Visualization III, pp. 201–215. Springer (2014)

  5. 5.

    Balasuriya, S., Ouellette, N.T., Rypina, I.I.: Generalized Lagrangian coherent structures. Physica D 372, 31–51 (2018)

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Brunton, S.L., Rowley, C.W.: Fast computation of finite-time Lyapunov exponent fields for unsteady flows. Chaos Interdiscip. J. Nonlinear Sci. 20(1), 017–503 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    Budišić, M., Thiffeault, J.L.: Finite-time braiding exponents. Chaos Interdiscip. J. Nonlinear Sci. 25(8), 087,407 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Chakraborty, P., Balachandar, S., Adrian, R.J.: On the relationships between local vortex identification schemes. J. Fluid Mech. 535, 189–214 (2005)

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    De Dominicis, M., Falchetti, S., Trotta, F., Pinardi, N., Giacomelli, L., Napolitano, E., Fazioli, L., Sorgente, R., Haley Jr., P.J., Lermusiaux, P.F., et al.: A relocatable ocean model in support of environmental emergencies. Ocean Dyn. 64(5), 667–688 (2014)

    Article  Google Scholar 

  10. 10.

    Dellnitz, M., Froyland, G., Junge, O.: The algorithms behind GAIO - set oriented numerical methods for dynamical systems. In: Fiedler, B. (ed.) Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems, pp. 145–174. Springer (2001)

  11. 11.

    Dellnitz, M., Junge, O., Lo, M.W., Marsden, J.E., Padberg, K., Preis, R., Ross, S.D., Thiere, B.: Transport of mars-crossing asteroids from the quasi-hilda region. Phys. Rev. Lett. 94, 231,102 (2005)

    Article  Google Scholar 

  12. 12.

    Desroches, M., Jeffrey, M.R.: Canards and curvature: the smallness of \(\varepsilon \) in slow–fast dynamics. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, p. rspa20110053. The Royal Society (2011)

  13. 13.

    Froyland, G., Padberg-Gehle, K.: A rough-and-ready cluster-based approach for extracting finite-time coherent sets from sparse and incomplete trajectory data. Chaos Interdiscip. J. Nonlinear Sci. 25(8), 087,406 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Garth, C., Gerhardt, F., Tricoche, X., Hans, H.: Efficient computation and visualization of coherent structures in fluid flow applications. IEEE Trans. Vis. Comput. Gr. 13(6), 1464–1471 (2007)

    Article  Google Scholar 

  15. 15.

    Gawlik, E.S., Marsden, J.E., Du Toit, P.C., Campagnola, S.: Lagrangian coherent structures in the planar elliptic restricted three-body problem. Celest. Mech. Dyn. Astron. 103(3), 227–249 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Green, M.A., Rowley, C.W., Smits, A.J.: Using hyperbolic Lagrangian coherent structures to investigate vortices in bioinspired fluid flows. Chaos Interdiscip. J. Nonlinear Sci. 20(1), 017,510 (2010)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Hadjighasem, A., Farazmand, M., Blazevski, D., Froyland, G., Haller, G.: A critical comparison of Lagrangian methods for coherent structure detection. Chaos Interdiscip. J. Nonlinear Sci. 27(5), 053,104 (2017)

    MathSciNet  Article  MATH  Google Scholar 

  18. 18.

    Haley, P.J., Lermusiaux, P.F.: Multiscale two-way embedding schemes for free-surface primitive equations in the multidisciplinary simulation, estimation and assimilation system. Ocean Dyn. 60(6), 1497–1537 (2010)

    Article  Google Scholar 

  19. 19.

    Haller, G.: Lagrangian structures and the rate of strain in a partition of two-dimensional turbulence. Phys. Fluids 13(11), 3365–3385 (2001)

    MathSciNet  Article  MATH  Google Scholar 

  20. 20.

    Haller, G.: A variational theory of hyperbolic Lagrangian coherent structures. Physica D 240(7), 574–598 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  21. 21.

    Haller, G., Sapsis, T.: Localized instability and attraction along invariant manifolds. SIAM J. Appl. Dyn. Syst. 9(2), 611–633 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  22. 22.

    Kai, E.T., Rossi, V., Sudre, J., Weimerskirch, H., Lopez, C., Hernandez-Garcia, E., Marsac, F., Garçon, V.: Top marine predators track Lagrangian coherent structures. Proc. Natl. Acad. Sci. 106(20), 8245–8250 (2009)

    Article  Google Scholar 

  23. 23.

    Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Dynamical Systems, the Three-Body Problem and Space Mission Design. Marsden Books, Pasadena (2011). (ISBN: 978-0-615-24095-4)

    Google Scholar 

  24. 24.

    Krupa, M., Szmolyan, P.: Relaxation oscillation and canard explosion. J. Differ. Equ. 174(2), 312–368 (2001)

    MathSciNet  Article  MATH  Google Scholar 

  25. 25.

    Kuehn, C.: Multiple Time Scale Dynamics, vol. 1. Springer, Berlin (2016)

    Google Scholar 

  26. 26.

    Lekien, F., Coulliette, C., Mariano, A.J., Ryan, E.H., Shay, L.K., Haller, G., Marsden, J.: Pollution release tied to invariant manifolds: a case study for the coast of Florida. Physica D 210(1–2), 1–20 (2005)

    MathSciNet  Article  MATH  Google Scholar 

  27. 27.

    Lekien, F., Ross, S.D.: The computation of finite-time Lyapunov exponents on unstructured meshes and for non-Euclidean manifolds. Chaos Interdiscip. J. Nonlinear Sci. 20(1), 017,505 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  28. 28.

    Lopesino, C., Balibrea-Iniesta, F., García-Garrido, V.J., Wiggins, S., Mancho, A.M.: A theoretical framework for Lagrangian descriptors. Int. J. Bifurc. Chaos 27(01), 1730,001 (2017)

    MathSciNet  Article  MATH  Google Scholar 

  29. 29.

    Madrid, J.J., Mancho, A.M.: Distinguished trajectories in time dependent vector fields. Chaos Interdiscip. J. Nonlinear Sci. 19(1), 013,111 (2009)

    MathSciNet  Article  Google Scholar 

  30. 30.

    Nave Jr., G.K., Ross, S.D.: Global phase space structures in a model of passive descent. Commun. Nonlinear Sci. Numer. Simul., Under Review arXiv:1804.05099 (2019)

  31. 31.

    Norris, J.A., Marsh, A.P., Granata, K.P., Ross, S.D.: Revisiting the stability of 2D passive biped walking: local behavior. Physica D 237(23), 3038–3045 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  32. 32.

    Peng, J., Dabiri, J.O.: The ‘upstream wake’ of swimming and flying animals and its correlation with propulsive efficiency. J. Exp. Biol. 211(16), 2669–2677 (2008)

    Article  Google Scholar 

  33. 33.

    Schindler, B., Peikert, R., Fuchs, R., Theisel, H.: Ridge concepts for the visualization of Lagrangian coherent structures. In: Peikert, R., Hauser, H., Carr, H., Fuchs, R. (eds.) Topological Methods in Data Analysis and Visualization II, pp. 221–235. Springer (2012)

  34. 34.

    Schmale III, D.G., Ross, S.D.: Highways in the sky: Scales of atmospheric transport of plant pathogens. Ann. Rev. Phytopathol. 53, 591–611 (2015)

    Article  Google Scholar 

  35. 35.

    Serra, M., Haller, G.: Objective Eulerian coherent structures. Chaos Interdiscip. J. Nonlinear Sci. 26(5), 110 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  36. 36.

    Shadden, S.C.: Lagrangian coherent structures. In: Grigoriev, R. (ed.) Transport and Mixing in Laminar Flows: From Microfluidics to Oceanic Currents, pp. 59–89. John Wiley & Sons, Ltd. (2011)

  37. 37.

    Shadden, S.C., Lekien, F., Marsden, J.E.: Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Physica D 212(3), 271–304 (2005)

    MathSciNet  Article  MATH  Google Scholar 

  38. 38.

    Strogatz, S.H.: Nonlinear Dynamics and Chaos: with Applications to Physics, Biology, Chemistry, and Engineering. Westview Press, Boulder (2014)

    Google Scholar 

  39. 39.

    Tallapragada, P., Sudarsanam, S.: A globally stable attractor that is locally unstable everywhere. AIP Adv. 7(12), 125,012 (2017)

    Article  Google Scholar 

  40. 40.

    Tanaka, M.L., Ross, S.D., Nussbaum, M.A.: Mathematical modeling and simulation of seated stability. J. Biomech. 43(5), 906–912 (2010)

    Article  Google Scholar 

  41. 41.

    Truesdell, C., Noll, W.: The Non-linear Field Theories of Mechanics. Springer, Berlin (2004)

    Google Scholar 

  42. 42.

    Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos, vol. 2. Springer, Berlin (2003)

    Google Scholar 

  43. 43.

    Wiggins, S.: The dynamical systems approach to Lagrangian transport in oceanic flows. Ann. Rev. Fluid Mech. 37, 295–328 (2005)

    MathSciNet  Article  MATH  Google Scholar 

  44. 44.

    Wiggins, S.: Normally Hyperbolic Invariant Manifolds in Dynamical Systems, vol. 105. Springer, Berlin (2013)

    Google Scholar 

  45. 45.

    Wiggins, S., Wiesenfeld, L., Jaffé, C., Uzer, T.: Impenetrable barriers in phase-space. Phys. Rev. Lett. 86, 5478–5481 (2001)

    Article  Google Scholar 

  46. 46.

    Xie, X., Nolan, P., Ross, S., Iliescu, T.: Lagrangian data-driven reduced order modeling of finite time Lyapunov exponents. arXiv:1808.05635 (2018)

  47. 47.

    Yeaton, I.J., Socha, J.J., Ross, S.D.: Global dynamics of non-equilibrium gliding in animals. Bioinspir. Biomim. 12(2), 026,013 (2017)

    Article  Google Scholar 

  48. 48.

    Zhong, J., Virgin, L.N., Ross, S.D.: A tube dynamics perspective governing stability transitions: an example based on snap-through buckling. Int. J. Mech. Sci. 149, 413–428 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Science Foundations Grants Division of Atmospheric and Geospace Sciences (Grant No. 1520825) Division of Civil, Mechanical and Manufacturing Innovation (Grant No. 1537349) and Division of Mathematical Sciences (Grant No. 1821145) and by the Biological Transport (BioTrans) Interdisciplinary Graduate Education Program at Virginia Tech. We thank Pierre Lermusiaux, P.J. Haley, and the MIT-MSEAS team for providing the MSEAS model data.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gary K. Nave Jr..

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Derivation of Eq. (17)

Appendix: Derivation of Eq. (17)

Starting with (15), the trajectory-normal repulsion rate, \(\rho _T\) can be written, to leading order in T, as,

$$\begin{aligned} \begin{aligned} \rho _T&= 1+ \left( \text {tr}({\mathbf {S}})-\frac{{\mathbf {v}} ^\dagger {\mathbf {S}}{\mathbf {v}}}{\left| {\mathbf {v}}\right| ^2}\right) T\\&= 1+ \frac{1}{\left| {\mathbf {v}}\right| ^2}(\text {tr}({\mathbf {S}}) \left| {\mathbf {v}}\right| ^2-{\mathbf {v}}^ \dagger {\mathbf {S}}{\mathbf {v}})T \\&= 1+ \frac{{\mathbf {v}}^\dagger (\text {tr}({\mathbf {S}}){\mathbf {I}} - {\mathbf {S}}){\mathbf {v}}}{\left| {\mathbf {v}}\right| ^2}T \end{aligned} \end{aligned}$$
(40)

For a 2-tensor, \({\mathbf {A}}\), the relation \(\text {tr}({\mathbf {A}}){\mathbf {I}}-{\mathbf {A}}\) in index notation may be written as \(A_{ii}\delta _{jk} - A_{jk}\).

$$\begin{aligned} \begin{aligned} \text {tr}({\mathbf {A}}){\mathbf {I}}-{\mathbf {A}}&= A_{ii}\delta _{jk} - A_{jk} \\&= A_{il}\delta _{li}\delta _{jk} - A_{il}\delta _{lk}\delta _{ji} \\&= A_{il}(\delta _{li}\delta _{jk} - \delta _{lk}\delta _{ji}) \\&= A_{il}\varepsilon _{lj}\varepsilon _{ik} \\&= {\mathbf {R}}^\dagger {\mathbf {A}}{\mathbf {R}} \end{aligned} \end{aligned}$$
(41)

where \(\varepsilon _{ij}\) is the two-dimensional Levi-Civita symbol which, for a 2x2 matrix, is the index representation of the negative of the \(90^\circ \) counter-clockwise rotation matrix, \(\varepsilon _{ij} = -{\mathbf {R}}\). Therefore, for small time T, \(\rho _T\) may be written as,

$$\begin{aligned} \begin{aligned} \rho _T&= 1+ \frac{{\mathbf {v}}^\dagger ({\mathbf {R}} ^\dagger {\mathbf {S}}{\mathbf {R}}){\mathbf {v}}}{\left| {\mathbf {v}}\right| ^2}T \\&= 1+ \frac{({\mathbf {R}}{\mathbf {v}})^\dagger {\mathbf {S}} ({\mathbf {R}}{\mathbf {v}})}{\left| {\mathbf {v}}\right| ^2}T \end{aligned} \end{aligned}$$
(42)

which can alternatively be written in terms of the unit normal field, \({\mathbf {n}} = {\mathbf {R}}{\mathbf {v}}/\left| {\mathbf {v}}\right| \), as in (3), yielding

$$\begin{aligned} \rho _T = 1+ \langle {\mathbf {n}},{\mathbf {S}}{\mathbf {n}} \rangle T \end{aligned}$$
(43)

which gives the leading order behavior defined by the instantaneous rate,

$$\begin{aligned} {{\dot{\rho }}} = \langle {\mathbf {n}},{\mathbf {S}}{\mathbf {n}} \rangle \end{aligned}$$
(44)

Note that the rate of length change for an infinitesimal material element vector \(\ell \) based at \({\mathbf {x}}_0\) and advected under the flow is

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t} |\ell | = \frac{1}{| \ell |} \langle \ell ,{\mathbf {S}}\ell \rangle \end{aligned}$$
(45)

Thus, the leading order behavior of the trajectory-normal repulsion rate for short time \(T\) can be thought of as the rate of stretching of unit normal vectors, normal to the invariant manifold passing through \({\mathbf {x}}_0\). This value is locally maximized along the most repulsive (or attractive) manifolds, which provide the most influential core of phase space deformation patterns.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nave, G.K., Nolan, P.J. & Ross, S.D. Trajectory-free approximation of phase space structures using the trajectory divergence rate. Nonlinear Dyn 96, 685–702 (2019). https://doi.org/10.1007/s11071-019-04814-z

Download citation

Keywords

  • Vector fields
  • Phase space structure
  • Computational geometry
  • Normally hyperbolic invariant manifolds