Medical image cipher using hierarchical diffusion and non-sequential encryption

Abstract

This paper presents a medical image cipher with hierarchical diffusion and non-sequential encryption mechanism. An improved permutation approach is developed, which can contribute to not only image shuffling but also lightweight pixel modification at the same time. Therefore, diffusion property of the proposed scheme is achieved from both the permutation and diffusion phases, and hierarchical diffusion effect is thus obtained. Besides, non-sequential visiting mechanism is developed to encrypt the plain pixels in secret order; in other words, pixel visiting order is exploited as extra encryption factor in addition to the traditional pixel location and gray value. With hyper-chaotic Lorenz system employed as key stream generator, a complete image encryption scheme is finally constructed. Experimental results and security analyses validate the effectiveness and superiority of the proposed cipher.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Notes

  1. 1.

    Medical images with 256 gray levels are employed for demonstration, whereas the extension to higher resolution images are straightforward.

  2. 2.

    The natural images are taken from the USC-SIPI Image Database (http://sipi.usc.edu/database/). The medical images are taken from a local hospital and have been de-identified, they are not presented in this paper for concise representation and interesting readers can find these images in [37] (Figure 3) which is another paper of our team.

  3. 3.

    Some performance indicators of Lian’s work [6] are reported in [16] and those of Chen’s work [4] can be found in [58].

  4. 4.

    The average item is mean of the absolute involved correlation coefficients.

  5. 5.

    The ciphers in [9, 26] can get high NPCR in the first encryption round, yet satisfactory UACI can only be obtained in the second round.

  6. 6.

    Wang’s cipher is an exception [13], as his variable control parameter definitely results in distinct key elements in different rounds; besides, the permutation is assumed to be iterated three times.

References

  1. 1.

    Hua, Z., Yi, S., Zhou, Y.: Medical image encryption using high-speed scrambling and pixel adaptive diffusion. Signal Process. 144, 134–144 (2018)

    Article  Google Scholar 

  2. 2.

    Alvarez, G., Li, S.: Some basic cryptographic requirements for chaos-based cryptosystems. Int. J. Bifurc. Chaos 16(08), 2129–2151 (2006)

    MathSciNet  MATH  Article  Google Scholar 

  3. 3.

    Fridrich, J.: Symmetric ciphers based on two-dimensional chaotic maps. Int. J. Bifurc. Chaos 08(06), 1259–1284 (1998)

    MathSciNet  MATH  Article  Google Scholar 

  4. 4.

    Chen, G., Mao, Y., Chui, C.K.: A symmetric image encryption scheme based on 3D chaotic cat maps. Chaos Solitons Fractals 21(3), 749–761 (2004)

    MathSciNet  MATH  Article  Google Scholar 

  5. 5.

    Mao, Y., Chen, G., Lian, S.: A novel fast image encryption scheme based on 3D chaotic baker maps. Int. J. Bifurc. Chaos 14(10), 3613–3624 (2004)

    MathSciNet  MATH  Article  Google Scholar 

  6. 6.

    Lian, S., Sun, J., Wang, Z.: A block cipher based on a suitable use of the chaotic standard map. Chaos Solitons Fractals 26(1), 117–129 (2005)

    MATH  Article  Google Scholar 

  7. 7.

    Belazi, A., Ellatif, A.A.A., Belghith, S.: A novel image encryption scheme based on substitution–permutation network and chaos. Signal Process. 128, 155–170 (2016)

    Article  Google Scholar 

  8. 8.

    Patidar, V., Pareek, N., Sud, K.: A new substitution–diffusion based image cipher using chaotic standard and logistic maps. Commun. Nonlinear Sci. Numer. Simul. 14(7), 3056–3075 (2009)

    Article  Google Scholar 

  9. 9.

    Zhang, W., Yu, H., Zhao, Y.-L., Zhu, Z.-L.: Image encryption based on three-dimensional bit matrix permutation. Signal Process. 118, 36–50 (2016)

    Article  Google Scholar 

  10. 10.

    Wong, K., Kwok, B.S., Law, W.: A fast image encryption scheme based on chaotic standard map. Phys. Lett. A 372(15), 2645–2652 (2008)

    MATH  Article  Google Scholar 

  11. 11.

    Norouzi, B., Mirzakuchaki, S., Seyedzadeh, S.M., Mosavi, M.R.: A simple, sensitive and secure image encryption algorithm based on hyper-chaotic system with only one round diffusion process. Multimed. Tools Appl. 71(3), 1469 (2014)

    Article  Google Scholar 

  12. 12.

    Tong, X.: The novel bilateral-diffusion image encryption algorithm with dynamical compound chaos. J. Syst. Softw. 85(4), 850–858 (2012)

    Article  Google Scholar 

  13. 13.

    Wang, Y., Wong, K., Liao, X., Xiang, T., Chen, G.: A chaos-based image encryption algorithm with variable control parameters. Chaos Solitons Fractals 41(4), 1773–1783 (2009)

    MATH  Article  Google Scholar 

  14. 14.

    Wong, K., Kwok, B.S., Yuen, C.: An efficient diffusion approach for chaos-based image encryption. Chaos Solitons Fractals 41(5), 2652–2663 (2009)

    MATH  Article  Google Scholar 

  15. 15.

    Diaconu, A.-V.: Circular inter-intra pixels bit-level permutation and chaos-based image encryption. Inf. Sci. 355, 314–327 (2016)

    Article  Google Scholar 

  16. 16.

    Zhu, Z., Zhang, W., Wong, K., Yu, H.: A chaos-based symmetric image encryption scheme using a bit-level permutation. Inf. Sci. 181(6), 1171–1186 (2011)

    Article  Google Scholar 

  17. 17.

    Xu, L., Li, Z., Li, J., Hua, W.: A novel bit-level image encryption algorithm based on chaotic maps. Opt. Lasers Eng. 78, 17–25 (2016)

    Article  Google Scholar 

  18. 18.

    Chen, J., Zhu, Z., Zhang, L., Zhang, Y., Yang, B.: Exploiting self-adaptive permutation-diffusion and DNA random encoding for secure and efficient image encryption. Signal Process. 142, 340–353 (2018)

    Article  Google Scholar 

  19. 19.

    Guesmi, R., Farah, M., Kachouri, A., Samet, M.: A novel chaos-based image encryption using DNA sequence operation and secure hash algorithm SHA-2. Nonlinear Dyn. 3(83), 1123–1136 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  20. 20.

    Wu, J., Liao, X., Yang, B.: Image encryption using 2D Hénon-sine map and DNA approach. Signal Process. 153, 11–23 (2018)

    Article  Google Scholar 

  21. 21.

    Enayatifar, R., Guimarães, F.G., Siarry, P.: Index-based permutation–diffusion in multiple-image encryption using DNA sequence. Opt. Lasers Eng. 115, 131–140 (2019)

    Article  Google Scholar 

  22. 22.

    Hua, Z., Zhou, B., Zhou, Y.: Sine-transform-based chaotic system with FPGA implementation. IEEE Trans. Ind. Electron. 65(3), 2557–2566 (2018)

    Article  Google Scholar 

  23. 23.

    Sahari, M.L., Boukemara, I.: A pseudo-random numbers generator based on a novel 3D chaotic map with an application to color image encryption. Nonlinear Dyn. 94(1), 723–744 (2018)

    Article  Google Scholar 

  24. 24.

    Asgari-Chenaghlu, M., Balafar, M.-A., Feizi-Derakhshi, M.-R.: A novel image encryption algorithm based on polynomial combination of chaotic maps and dynamic function generation. Signal Process. 157, 1–13 (2019)

    Article  Google Scholar 

  25. 25.

    Zahmoul, R., Ejbali, R., Zaied, M.: Image encryption based on new Beta chaotic maps. Opt. Lasers Eng. 96, 39–49 (2017)

    Article  Google Scholar 

  26. 26.

    Zhang, Y.-Q., Wang, X.-Y.: A new image encryption algorithm based on non-adjacent coupled map lattices. Appl.Soft Comput. 26, 10–20 (2015)

    Article  Google Scholar 

  27. 27.

    Sun, F., Lü, Z., Liu, S.: A new cryptosystem based on spatial chaotic system. Opt. Commun. 283(10), 2066–2073 (2010)

    Article  Google Scholar 

  28. 28.

    Hussain, I., Ahmed, J., Hussain, A.: An image encryption technique based on coupled map lattice and one-time S-boxes based on complex chaotic system. J. Intell. Fuzzy Syst. 29(4), 1493–1500 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  29. 29.

    Belazi, A., Khan, M., El-Latif, A.A.A., Belghith, S.: Efficient cryptosystem approaches: S-boxes and permutation-substitution-based encryption. Nonlinear Dyn. 87(1), 337–361 (2017)

    Article  Google Scholar 

  30. 30.

    Hussain, I.: Optical image encryption based on s-box transformation and fractional Hartley transform. J. Vib. Control 22(4), 1143–1146 (2016)

    MathSciNet  Article  Google Scholar 

  31. 31.

    Ullah, A., Jamal, S.S., Shah, T.: A novel construction of substitution box using a combination of chaotic maps with improved chaotic range. Nonlinear Dyn. 88(4), 2757–2769 (2017)

    Article  Google Scholar 

  32. 32.

    Kumar, M., Vaish, A.: An efficient encryption-then-compression technique for encrypted images using SVD. Digital Signal Process. 60, 81–89 (2017)

    Article  Google Scholar 

  33. 33.

    Hamdi, M., Rhouma, R., Belghith, S.: A selective compression-encryption of images based on SPIHT coding and Chirikov standard map. Signal Process. 131, 514–526 (2017)

    Article  Google Scholar 

  34. 34.

    Özkaynak, F.: Brief review on application of nonlinear dynamics in image encryption. Nonlinear Dyn. 92(2), 305–313 (2018)

    Article  Google Scholar 

  35. 35.

    Fu, C., Meng, W., Zhan, Y., Zhu, Z., Lau, F.C.M., Tse, C.K., Ma, H.: An efficient and secure medical image protection scheme based on chaotic maps. Comput. Biol. Med. 43(8), 1000–1010 (2013)

    Article  Google Scholar 

  36. 36.

    Zhang, L., Zhu, Z., Yang, B., Liu, W., Zhu, H., Zou, M.: Cryptanalysis and improvement of an efficient and secure medical image protection scheme. Math. Probl. Eng. 2015, 1–11 (2015)

    Google Scholar 

  37. 37.

    Chen, J., Zhu, Z., Fu, C., Zhang, L., Zhang, Y.: An image encryption scheme using nonlinear inter-pixel computing and swapping based permutation approach. Commun. Nonlinear Sci. Numer. Simul. 23, 294–310 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  38. 38.

    Cao, W., Zhou, Y., Chen, C.L.P., Xia, L.: Medical image encryption using edge maps. Signal Process. 132, 96–109 (2017)

    Article  Google Scholar 

  39. 39.

    Nematzadeh, H., Enayatifar, R., Motameni, H., Guimarães, F.G., Coelho, V.N.: Medical image encryption using a hybrid model of modified genetic algorithm and coupled map lattices. Opt. Lasers Eng. 110, 24–32 (2018)

    Article  Google Scholar 

  40. 40.

    Kanso, A., Ghebleh, M.: An efficient and robust image encryption scheme for medical applications. Commun. Nonlinear Sci. Numer. Simul. 24, 98–116 (2015)

    MathSciNet  Article  Google Scholar 

  41. 41.

    Zhang, W., Wong, K., Yu, H., Zhu, Z.: A symmetric color image encryption algorithm using the intrinsic features of bit distributions. Commun. Nonlinear Sci. Numer. Simul. 18(3), 584–600 (2013)

    MathSciNet  MATH  Article  Google Scholar 

  42. 42.

    Chen, L., Wang, S.: Differential cryptanalysis of a medical image cryptosystem with multiple rounds. Comput. Biol. Med. 65, 69–75 (2015)

    Article  Google Scholar 

  43. 43.

    Jolfaei, A., Wu, X., Muthukkumarasamy, V.: On the security of permutation-only image encryption schemes. IEEE Trans. Inf. Forensics Secur. 11(2), 235–246 (2016)

    Article  Google Scholar 

  44. 44.

    Zhang, L.Y., Liu, Y., Wong, K.-W., Pareschi, F., Zhang, Y., Rovatti, R., Setti, G.: On the security of a class of diffusion mechanisms for image encryption. IEEE Trans. Cybern. 99, 1–13 (2017)

    Article  Google Scholar 

  45. 45.

    Zhang, Y., Xiao, D., Wen, W., Wong, K.: On the security of symmetric ciphers based on DNA coding. Inf. Sci. 289, 254–261 (2014)

    MATH  Article  Google Scholar 

  46. 46.

    Zhang, W., Wong, K., Yu, H., Zhu, Z.: An image encryption scheme using reverse 2-dimensional chaotic map and dependent diffusion. Commun. Nonlinear Sci. Numer. Simul. 18(8), 2066–2080 (2013)

    MathSciNet  MATH  Article  Google Scholar 

  47. 47.

    Su, M., Wen, W., Zhang, Y.: Security evaluation of bilateral-diffusion based image encryption algorithm. Nonlinear Dyn. 77, 243–246 (2014)

    MathSciNet  MATH  Article  Google Scholar 

  48. 48.

    Preishuber, M., Hutter, T., Katzenbeisser, S., Uhl, A.: Depreciating motivation and empirical security analysis of chaos-based image and video encryption. IEEE Trans. Inf. Forensics Secur. 13(9), 2137–2150 (2018)

    Article  Google Scholar 

  49. 49.

    Wang, K., Zou, L., Song, A., He, Z., et al.: On the security of 3d cat map based symmetric image encryption scheme. Phys. Lett. A 343(6), 432–439 (2005)

    MATH  Article  Google Scholar 

  50. 50.

    Zhou, N., Pan, S., Cheng, S., Zhou, Z.: Image compression-encryption scheme based on hyper-chaotic system and 2D compressive sensing. Opt. Laser Technol. 82, 121–133 (2016)

    Article  Google Scholar 

  51. 51.

    Li, Z., Peng, C., Li, L., Zhu, X.: A novel plaintext-related image encryption scheme using hyper-chaotic system. Nonlinear Dyn. 94(2), 1319–1333 (2018)

    Article  Google Scholar 

  52. 52.

    Ferguson, N., Whiting, D., Schneier, B., Kelsey, J., Lucks, S., Kohno, T.: Helix: Fast encryption and authentication in a single cryptographic primitive. In: International workshop on fast software encryption, pp. 330–346. Springer (2003)

  53. 53.

    Paul, S., Preneel, B.: Near optimal algorithms for solving differential equations of addition with batch queries. In: International conference on cryptology in India, pp. 90–103. Springer (2005)

  54. 54.

    Zhang, L.Y.: Design and analysis of multimedia cryptosystems. Ph.D. thesis, City University of Hongkong

  55. 55.

    Li, Y., Liu, X., Chen, G., Liao, X.: A new hyperchaotic Lorenz-type system: generation, analysis, and implementation. Int. J. Circuit Theory Appl. 39(8), 865–879 (2011)

    Google Scholar 

  56. 56.

    Wu, Y., Noonan, J.P., Agaian, S.: NPCR and UACI randomness tests for image encryption, cyber journals: multidisciplinary journals in science and technology. JSAT 1(2), 31–38 (2011)

    Google Scholar 

  57. 57.

    IEEE standard for floating-point arithmetic: IEEE Std 754–2008, pp. 1–70 (2008)

  58. 58.

    Wu, Y., Zhou, Y., Noonan, J.P., Agaian, S.S.: Design of image cipher using Latin squares. Inf. Sci. 264, 317–339 (2014)

    MathSciNet  MATH  Article  Google Scholar 

Download references

Acknowledgements

This work is funded by the National Natural Science Foundation of China (No. 61802055), Fundamental Research Funds for the Central Universities (No. N171903003), Postdoctoral Science Foundation of Northeastern University (No. 20180101), China Postdoctoral Science Foundation (No. 2018M630301). Thanks to Dr Zhongyun Hua (Harbin Institute of Technology Shenzhen Graduate School) for his valuable suggestions. Thanks to Prof. Yicong Zhou (University of Macau) for his selfless suggestions on information security and technical writing, Junxin Chen has started his Postdoctoral Fellowship under the UM Macao Talent Program with Prof. Zhou’s supervision from 01/01/2019.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Junxin Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Chen, L., Zhang, L.Y. et al. Medical image cipher using hierarchical diffusion and non-sequential encryption. Nonlinear Dyn 96, 301–322 (2019). https://doi.org/10.1007/s11071-019-04791-3

Download citation

Keywords

  • Image encryption
  • Medical image
  • Hierarchical diffusion
  • Non-sequential encryption