Distributed finite-time coordinated tracking control for multiple Euler–Lagrange systems with input nonlinearity

Abstract

In this paper, distributed finite-time coordinated tracking control for multiple Euler–Lagrange systems with input nonlinearity is investigated by using backstepping design technique under directed topology. The controller is designed under the condition that the information of the dynamic leader is available to only a subset of the followers. We first design an auxiliary variable relating to trajectory errors among neighbor agents. Then a distributed finite-time tracking control algorithm is developed where two neural networks are used to approximate the nonlinear model uncertainties and input nonlinearity, respectively. When considering that there exists incomplete known state for each follower, a modified distributed finite-time tracking control strategy is designed by utilizing high-gain observers. Based on backstepping method, finite-time technique, and graph theory, both proposed control strategies guarantee that tracking errors between each follower and the leader could be ultimately bounded in finite time. Numerical simulations show the superiorities of the proposed protocols by comparisons with existing methods.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

References

  1. 1.

    Hao, Y.Q., Duan, Z.S., Chen, G.R.: Further on the controllability of networked MIMO LTI systems. Int. J. Robust Nonlinear Control 28(5), 1778–1788 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  2. 2.

    Zhao, Q.L., Dong, X.W., Liang, Z.X., Ren, Z.: Distributed group cooperative guidance for multiple missiles with fixed and switching directed communication topologies. Nonlinear Dyn. 90(4), 2507–2523 (2017)

    Article  MATH  Google Scholar 

  3. 3.

    Wang, F., Chen, B., Zhang, Z.Y., Lin, C.: Adaptive tracking control of uncertain switched stochastic nonlinear systems. Nonlinear Dyn. 84(4), 2099–2109 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. 4.

    Xu, C.J., Zheng, Y., Su, H.S., Chen, M.Z.Q., Zhang, C.F.: Cluster consensus for second-order mobile multi-agent systems via distributed adaptive pinning control under directed topology. Nonlinear Dyn. 83(4), 1975–1985 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. 5.

    Hu, G.Q.: Robust consensus tracking for an integrator-type multi-agent system with disturbances and unmodelled dynamics. Int. J. Control 84(1), 1–8 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. 6.

    Cao, Y.C., Ren, W.: Distributed coordinated tracking with reduced interaction via a variable structure approach. IEEE Trans. Autom. Control 57(1), 33–48 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. 7.

    Li, Z.X., Ji, H.B.: Distributed consensus and tracking control of second-order time-varying nonlinear multi-agent systems. Int. J. Robust Nonlinear Control 27(17), 3549–3563 (2017)

    MathSciNet  MATH  Google Scholar 

  8. 8.

    Zhao, Y., Liu, Y.F., Wen, G.H., Alotaibi, N.D., Shi, Z.K.: Distributed finite-time tracking of second-order multi-agent systems: an edge-based approach. IET Control Theory Appl. 12(1), 149–154 (2018)

    Article  MathSciNet  Google Scholar 

  9. 9.

    Zhao, D.Y., Li, S.Y., Zhu, Q.M.: Adaptive synchronised tracking control for multiple robotic manipulators with uncertain kinematics and dynamics. Int. J. Syst. Sci. 47(4), 791–804 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. 10.

    Cheng, L., Cheng, M., Yu, H.N., Deng, L., Hou, Z.G.: Distributed tracking control of uncertain multiple manipulators under switching topologies using neural networks. In: Cheng, L., Liu, Q. S., Ronzhin, A. (eds.) Advances in Neural Networks—ISNN 2016: 13th International Symposium on Neural Networks, ISNN 2016, St. Petersburg, Russia, July 6–8, 2016, Proceedings, Springer International Publishing, Cham, pp. 233–241 (2016)

  11. 11.

    Hao, Y.Q., Duan, Z.S., Wen, G.H.: Controllability and observability of an n-link robot with multiple active links. Int. J. Robust Nonlinear Control 27(18), 4633–4647 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. 12.

    Yin, Y.F., Hu, L.L., Xu, N., Wang, X.Y.: Synchronization for non-uniform sampling networked rigid bodies. Neurocomputing 173, 1761–1767 (2016)

    Article  Google Scholar 

  13. 13.

    Chen, G., Lewis, F.L.: Distributed tracking control for networked mechanical systems. Asian J. Control 14(6), 1459–1469 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. 14.

    Yang, Z.J., Shibuya, Y., Qin, P.: Distributed robust control for synchronised tracking of networked Euler–Lagrange systems. Int. J. Syst. Sci. 46(4), 720–732 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. 15.

    Yang, Q.K., Fang, H., Chen, J., Wang, X.J.: Distributed observer-based coordination for multiple Lagrangian systems using only position measurements. IET Control Theory Appl. 8(17), 2102–2114 (2014)

    Article  MathSciNet  Google Scholar 

  16. 16.

    Yang, Q.K., Fang, H., Chen, J., Jiang, Z.P., Cao, M.: Distributed global output-feedback control for a class of Euler–Lagrange systems. IEEE Trans. Autom. Control 62(9), 4855–4861 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. 17.

    Zhao, Y., Duan, Z.S., Wen, G.H., Chen, G.R.: Distributed finite-time tracking for a multi-agent system under a leader with bounded unknown acceleration. Syst. Control Lett. 81, 8–13 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. 18.

    Li, S.H., Du, H.B., Lin, X.Z.: Finite-time consensus algorithm for multi-agent systems with double-integrator dynamics. Automatica 47(8), 1706–1712 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. 19.

    Chen, G., Yue, Y., Song, Y.: Finite-time cooperative-tracking control for networked Euler–Lagrange systems. IET Control Theory Appl. 7(11), 1487–1497 (2013)

    Article  MathSciNet  Google Scholar 

  20. 20.

    Sun, Y.C., Ma, G.F., Liu, M.M., Li, C.J., Liang, J.B.: Distributed finite-time coordinated control for multi-robot systems. Trans. Inst. Meas. Control 40(9), 2912–2927 (2018)

    Article  Google Scholar 

  21. 21.

    Sun, Y.C., Ma, G.E., Liu, M.M., Chen, L.M.: Distributed finite-time configuration containment control for satellite formation. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 231(9), 1609–1620 (2017)

    Article  Google Scholar 

  22. 22.

    Jiang, Y.M., Yang, C.G., Na, J., Li, G., Li, Y.N., Zhong, J.P.: A brief review of neural networks based learning and control and their applications for robots. Complexity (2017). https://doi.org/10.1155/2017/1895897

  23. 23.

    Chen, G., Lewis, F.L.: Distributed adaptive tracking control for synchronization of unknown networked Lagrangian systems. IEEE Trans. Syst. Man Cybern. Part B Cybern. 41(3), 805–816 (2011)

    Article  Google Scholar 

  24. 24.

    Sun, Y.C., Wang, W.J., Ma, G.F., Li, Z., Li, C.J.: Backstepping-based distributed coordinated tracking for multiple uncertain Euler–Lagrange systems. J. Syst. Eng. Electron. 27(5), 1083–1095 (2016)

    Article  Google Scholar 

  25. 25.

    Li, D.Y., Ma, G.F., He, W., Zhang, W., Li, C.J., Ge, S.S.: Distributed coordinated tracking control of multiple Euler–Lagrange systems by state and output feedback. IET Control Theory Appl. 11(14), 2213–2221 (2017)

    Article  MathSciNet  Google Scholar 

  26. 26.

    Su, H.S., Chen, M.Z.Q., Chen, G.R.: Robust semi-global coordinated tracking of linear multi-agent systems with input saturation. Int. J. Robust Nonlinear Control 25(14), 2375–2390 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. 27.

    Chen, M., Ge, S.S., How, B.V.E.: Robust adaptive neural network control for a class of uncertain MIMO nonlinear systems with input nonlinearities. IEEE Trans. Neural Netw. 21(5), 796–812 (2010)

    Article  Google Scholar 

  28. 28.

    Shen, Q.K., Shi, P., Shi, Y., Zhang, J.H.: Adaptive output consensus with saturation and dead-zone and its application. IEEE Trans. Ind. Electron. 64(6), 5025–5034 (2017)

    Article  Google Scholar 

  29. 29.

    Li, Z.K., Wen, G.H., Duan, Z.S., Ren, W.: Designing fully distributed consensus protocols for linear multi-agent systems with directed graphs. IEEE Trans. Autom. Control 60(4), 1152–1157 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. 30.

    Mei, J., Ren, W., Ma, G.F.: Distributed coordinated tracking with a dynamic leader for multiple Euler–Lagrange systems. IEEE Trans. Autom. Control 56(6), 1415–1421 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. 31.

    Hua, C.C., Chang, Y.F.: Decentralized adaptive neural network control for mechanical systems with dead-zone input. Nonlinear Dyn. 76(3), 1845–1855 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. 32.

    Hou, Z.G., Cheng, L., Tan, M.: Decentralized robust adaptive control for the multiagent system consensus problem using neural networks. IEEE Trans. Syst. Man Cybern. Part B Cybern. 39(3), 636–647 (2009)

    Article  Google Scholar 

  33. 33.

    Ge, S.S., Jin, Z.: Neural-network control of nonaffine nonlinear system with zero dynamics by state and output feedback. IEEE Trans. Neural Netw. 14(4), 900–918 (2003)

    Article  Google Scholar 

  34. 34.

    He, W., Ouyang, Y.C., Hong, J.: Vibration control of a flexible robotic manipulator in the presence of input deadzone. IEEE Trans. Ind. Inform. 13(1), 48–59 (2017)

    Article  Google Scholar 

  35. 35.

    He, W., Chen, Y.H., Yin, Z.: Adaptive neural network control of an uncertain robot with full-state constraints. IEEE Trans. Cybern. 46(3), 620–629 (2016)

    Article  Google Scholar 

  36. 36.

    He, W., Ge, S.S., Li, Y.A., Chew, E., Ng, Y.S.: Neural network control of a rehabilitation robot by state and output feedback. J. Intell. Robot. Syst. 80(1), 15–31 (2015)

    Article  Google Scholar 

  37. 37.

    Mei, J., Zhang, H.B., Ma, G.F.: Adaptive coordinated tracking for networked Euler–Lagrange systems under a directed graph. Acta Auto. Sin. 37(5), 596–603 (2011)

    MathSciNet  MATH  Google Scholar 

  38. 38.

    Tee, K.P., Ge, S.S.: Control of fully actuated ocean surface vessels using a class of feedforward approximators. IEEE Trans. Control Syst. Technol. 14(4), 750–756 (2006)

    Article  Google Scholar 

  39. 39.

    Ge, S.S., Hang, C.C., Lee, T.H., Zhang, T.: Stable Adaptive Neural Network Control, vol. 13. Springer, Berlin (2001)

    Google Scholar 

  40. 40.

    Xu, Y.S., Kanade, T.: Space Robotics: Dynamics and Control. Springer, Berlin (1992)

    Google Scholar 

  41. 41.

    Wang, H.L.: Task-space synchronization of networked robotic systems with uncertain kinematics and dynamics. IEEE Trans. Autom. Control 58(12), 3169–3174 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China, under grant 61803119 and U1713205.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hongde Qin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Chen, L., Qin, H. et al. Distributed finite-time coordinated tracking control for multiple Euler–Lagrange systems with input nonlinearity. Nonlinear Dyn 95, 2395–2414 (2019). https://doi.org/10.1007/s11071-018-4699-7

Download citation

Keywords

  • Euler–Lagrange systems
  • Distributed tracking control
  • Finite-time control
  • Backstepping control
  • Neural network
  • Input nonlinearity