On the response of MEMS resonators under generic electrostatic loadings: experiments and applications


We present an investigation of the dynamic behavior of an electrostatically actuated clamped–clamped microbeam, under the simultaneous excitation of primary and subharmonic resonance. The simultaneous excitation of primary and subharmonic resonances of similar strength is experimentally investigated by using different combinations of AC and DC voltages. It is observed that the response of the resonator is governed by a mixed effect of both excitations. Subharmonic-dominated response shows sharp amplitude transitions and smaller monostable regime, while primary-dominated response shows gradual amplitude transition and larger monostable regime. Two potential applications are experimentally demonstrated. The first is a resonator-based MEMS AND logic gate based on AC only subharmonic excitation. The second is a charge sensor based on the transition from subharmonic-dominated response to primary-dominated response, which is potentially capable of detecting a small amount of electric charges.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Rhoads, J.F., Shaw, S.W., Turner, K.L.: Nonlinear dynamics and its applications in micro-and nanoresonators. J. Dyn. Syst. Measur. Control 132, 034001 (2010)

    Google Scholar 

  2. 2.

    Zhang, W., Turner, K.L.: Application of parametric resonance amplification in a single-crystal silicon micro-oscillator based mass sensor. Sens. Actuat. A Phys. 122, 23–30 (2005)

    Google Scholar 

  3. 3.

    Wadas, M.J., Tweardy, M., Bajaj, N., Murray, A.K., Chiu, G.T.C., Nauman, E.A., Rhoads, J.F.: Detection of traumatic brain injury protein biomarkers with resonant microsystems. IEEE Sens. Lett. 1, 1–4 (2017)

    Google Scholar 

  4. 4.

    Mahboob, I., Flurin, E., Nishiguchi, K., Fujiwara, A., Yamaguchi, H.: Interconnect-free parallel logic circuits in a single mechanical resonator. Nat. Commun. 2, 198 (2011)

    Google Scholar 

  5. 5.

    Hafiz, M.A.A., Kosuru, L., Younis, M.I.: Microelectromechanical reprogrammable logic device. Nat. Commun. 7, 11137 (2016)

    Google Scholar 

  6. 6.

    Guerra, D.N., Bulsara, A.R., Ditto, W.L., Sinha, S., Murali, K., Mohanty, P.: A noise-assisted reprogrammable nanomechanical logic gate. Nano Lett. 10, 1168–1171 (2010)

    Google Scholar 

  7. 7.

    Ilyas, S., Arevalo, A., Bayes, E., Foulds, I.G., Younis, M.I.: Torsion based universal MEMS logic device. Sens. Actuat. A Phys. 236, 150–158 (2015)

    Google Scholar 

  8. 8.

    Sinha, N., Jones, T.S., Guo, Z., Piazza, G.: Body-biased complementary logic implemented using AlN piezoelectric MEMS switches. J. Microelectromechanical Syst. 21, 484–496 (2012)

    Google Scholar 

  9. 9.

    Wong, A.C., Nguyen, C.C.: Micromechanical mixer-filters (mixlers). J. Microelectromechanical Syst. 13, 100–112 (2004)

    Google Scholar 

  10. 10.

    Ilyas, S., Chappanda, K.N., Younis, M.I.: Exploiting nonlinearities of micro-machined resonators for filtering applications. Appl. Phys. Lett. 110, 253508 (2017)

    Google Scholar 

  11. 11.

    Kacem, N., Hentz, S., Pinto, D., Reig, B., Nguyen, V.: Nonlinear dynamics of nanomechanical beam resonators: improving the performance of NEMS-based sensors. Nanotechnology 20, 275501 (2009)

    Google Scholar 

  12. 12.

    Kacem, N., Arcamone, J., Perez-Murano, F., Hentz, S.: Dynamic range enhancement of nonlinear nanomechanical resonant cantilevers for highly sensitive NEMS gas/mass sensor applications. J. Micromec. Microeng. 20, 045023 (2010)

    Google Scholar 

  13. 13.

    Dick, N., Grutzik, S., Wallin, C.B., Ilic, B.R., Krylov, S., Zehnder, A.T.: Actuation of higher harmonics in large arrays of micromechanical cantilevers for expanded resonant peak separation. J. Vib. Acoust. 140, 051013 (2018)

    Google Scholar 

  14. 14.

    Westra, H.J.R., Poot, M., Van Der Zant, H.S.J., Venstra, W.J.: Nonlinear modal interactions in clamped–clamped mechanical resonators. Phys. Rev. Lett. 105, 117205 (2010)

    Google Scholar 

  15. 15.

    Castellanos-Gomez, A., Meerwaldt, H.B., Venstra, W.J., van der Zant, H.S., Steele, G.A.: Strong and tunable mode coupling in carbon nanotube resonators. Phys. Rev. B 86, 041402 (2012)

    Google Scholar 

  16. 16.

    Li, L.L., Polunin, P.M., Dou, S., Shoshani, O., Scott Strachan, B., Jensen, J.S., Turner, K.L.: Tailoring the nonlinear response of MEMS resonators using shape optimization. Appl. Phys. Lett. 110, 081902 (2017)

    Google Scholar 

  17. 17.

    Castellanos-Gomez, A., van Leeuwen, R., Buscema, M., van der Zant, H.S., Steele, G.A., Venstra, W.J.: Single-layer MoS2 mechanical resonators. Adv. Mater. 25, 6719–6723 (2013)

    Google Scholar 

  18. 18.

    Suh, J., LaHaye, M.D., Echternach, P.M., Schwab, K.C., Roukes, M.L.: Parametric amplification and back-action noise squeezing by a qubit-coupled nanoresonator. Nano Lett. 10, 3990–3994 (2010)

    Google Scholar 

  19. 19.

    Eichler, A., Chaste, J., Moser, J., Bachtold, A.: Parametric amplification and self-oscillation in a nanotube mechanical resonator. Nano Lett. 11, 2699–2703 (2011)

    Google Scholar 

  20. 20.

    Rhoads, J.F., Shaw, S.W., Turner, K.L., Baskaran, R.: Tunable microelectromechanical filters that exploit parametric resonance. J. Vib. Acoust. 127, 423–430 (2005)

    Google Scholar 

  21. 21.

    Cassella, C., Strachan, S., Shaw, S.W., Piazza, G.: Phase noise suppression through parametric filtering. Appl. Phys. Lett. 110, 063503 (2017)

    Google Scholar 

  22. 22.

    Ilyas, S., Ramini, A., Arevalo, A., Younis, M.I.: An experimental and theoretical investigation of a micromirror under mixed-frequency excitation. J. Microelectromechanical Syst. 24, 1124–1131 (2005)

    Google Scholar 

  23. 23.

    Ilyas, S., Jaber, N., Younis, M.I.: MEMS logic using mixed-frequency excitation. J. Microelectromechanical Syst. 26, 1140–1146 (2017)

    Google Scholar 

  24. 24.

    Davies, H.G., Rajan, S.: Random superharmonic and subharmonic response: multiple time scaling of a Duffing oscillator. J. Sound Vib. 126, 195–208 (1988)

    MathSciNet  MATH  Google Scholar 

  25. 25.

    Nayfeh, A.H.: Introduction to Perturbation Techniques. Wiley, London (2011)

    Google Scholar 

  26. 26.

    Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, London (2008)

    Google Scholar 

  27. 27.

    Abdel-Rahman, E.M., Nayfeh, A.H.: Secondary resonances of electrically actuated resonant microsensors. J. Micromech. Microeng. 13, 491 (2003)

    Google Scholar 

  28. 28.

    Nayfeh, A.H.: The response of single degree of freedom systems with quadratic and cubic non-linearities to a subharmonic excitation. J. Sound Vib. 89, 457–470 (1983)

    MATH  Google Scholar 

  29. 29.

    Nayfeh, A.H., Younis, M.I.: Dynamics of MEMS resonators under superharmonic and subharmonic excitations. J. Micromech. Microeng. 15, 1840 (2005)

    Google Scholar 

  30. 30.

    Nayfeh, A.H.: The response of non-linear single-degree-of-freedom systems to multifrequency excitations. J. Sound Vib. 102, 403–414 (1985)

    Google Scholar 

  31. 31.

    Younis, M.I., Alsaleem, F.: Exploration of new concepts for mass detection in electrostatically-actuated structures based on nonlinear phenomena. J. Comput. Nonlinear Dyn. 4, 021010 (2009)

    Google Scholar 

  32. 32.

    Ouakad, H.M., Younis, M.I.: Nonlinear dynamics of electrically actuated carbon nanotube resonators. J. Comput. Nonlinear Dyn. 5, 011009 (2010)

    Google Scholar 

  33. 33.

    Nayfeh, A.H.: Quenching of primary resonance by a superharmonic resonance. J. Sound Vib. 92, 363–377 (1984)

    MathSciNet  MATH  Google Scholar 

  34. 34.

    Jin, Z., Wang, Y.: Electrostatic resonator with second superharmonic resonance. Sens. Actuat. A Phys. 64, 273–279 (1998)

    Google Scholar 

  35. 35.

    Younis, M.I., Ouakad, H.M., Alsaleem, F.M., Miles, R., Cui, W.: Nonlinear dynamics of MEMS arches under harmonic electrostatic actuation. J. Microelectromechanical Syst. 19, 647–656 (2010)

    Google Scholar 

  36. 36.

    Alsaleem, F.M., Younis, M.I., Ouakad, H.M.: On the nonlinear resonances and dynamic pull-in of electrostatically actuated resonators. J. Micromech. Microeng. 19, 045013 (2009)

    Google Scholar 

  37. 37.

    Chappanda, K.N., Ilyas, S., Kazmi, S.N.R., Holguin-Lerma, J., Batra, N.M., Costa, P.M.F.J., Younis, M.I.: A single nano cantilever as a reprogrammable universal logic gate. J. Micromech. Microeng. 27, 045007 (2017)

    Google Scholar 

  38. 38.

    Kazmi, S.N., Hafiz, M.A., Chappanda, K.N., Ilyas, S., Holguin, J., Costa, P.M., Younis, M.I.: Tunable nanoelectromechanical resonator for logic computations. Nanoscale 9, 3449–3457 (2017)

    Google Scholar 

  39. 39.

    Wenzler, J.S., Dunn, T., Toffoli, T., Mohanty, P.: A nanomechanical Fredkin gate. Nano Lett. 14, 89–93 (2013)

    Google Scholar 

  40. 40.

    Jalil, J., Zhu, Y., Ekanayake, C., Ruan, Y.: Sensing of single electrons using micro and nano technologies: a review. Nanotechnology 28, 142002 (2017)

    Google Scholar 

  41. 41.

    Zhao, J., Ding, H., Xie, J.: Electrostatic charge sensor based on a micromachined resonator with dual micro-levers. Appl. Phys. Lett. 106, 233505 (2015)

    Google Scholar 

  42. 42.

    Chen, D., Zhao, J., Wang, Y., Xie, J.: An electrostatic charge sensor based on micro resonator with sensing scheme of effective stiffness perturbation. J. Micromech. Microeng. 27, 065002 (2017)

    Google Scholar 

  43. 43.

    Zhang, H., Huang, J., Yuan, W., Chang, H.: A high-sensitivity micromechanical electrometer based on mode localization of two degree-of-freedom weakly coupled resonators. J. Microelectromechanical Syst. 25, 937–946 (2016)

    Google Scholar 

  44. 44.

    Younis, M.I.: MEMS Linear and Nonlinear Statics and Dynamics. Springer, Berlin (2011)

    Google Scholar 

  45. 45.

    Abdel-Rahman, E.M., Younis, M.I., Nayfeh, A.H.: Characterization of the mechanical behavior of an electrically actuated microbeam. J. Micromech. Microeng. 12, 759 (2002)

    Google Scholar 

  46. 46.

    Younis, M.I., Nayfeh, A.H.: A study of the nonlinear response of a resonant microbeam to an electric actuation. Nonlin. Dynam. 31, 91–117 (2003)

    MATH  Google Scholar 

  47. 47.

    Saghir, S., Bellaredj, M.L., Ramini, A., Younis, M.I.: Initially curved microplates under electrostatic actuation: theory and experiment. J. Micromech. Microeng. 26, 095004 (2016)

    Google Scholar 

  48. 48.

    Al Hafiz, M.A., Ilyas, S., Ahmed, S., Younis, M.I., Fariborzi, H.: A microbeam resonator with partial electrodes for logic and memory elements. IEEE J. Explor. Solid State Comput. Devices Circuits 3, 83–92 (2017)

    Google Scholar 

Download references


This publication is based upon work supported by the King Abdullah University of Science and Technology (KAUST) office of sponsored research OSR under Award No. OSR-2016-CRG5-3001.

Author information



Corresponding author

Correspondence to Mohammad I. Younis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.



$$\begin{aligned}&\alpha _q =-3\beta V_{\mathrm{eff}} \left( {\mathop \int \limits _0^1 \frac{\phi _j ^{3}}{\left( {1-w_s } \right) ^{4}}\hbox {d}x} \right) \nonumber \\&\quad -\,\alpha _1 \left( {\mathop \int \limits _0^1 \phi _j w_s ^{\prime \prime }\left( {\mathop \int \limits _0^1 \left( {\phi _j ^{\prime }} \right) ^{2}\hbox {d}x} \right) \hbox {d}x} \right) \end{aligned}$$
$$\begin{aligned}&\quad -\,2\alpha _1 \left( {\mathop \int \limits _0^1 \phi _j \phi _j ^{\prime \prime }\left( {\mathop \int \limits _0^1 \phi _j ^{\prime }w_s ^{\prime }\hbox {d}x} \right) \hbox {d}x} \right) \end{aligned}$$
$$\begin{aligned}&\alpha _c =-4\beta V_{\mathrm{eff}} \left( {\mathop \int \limits _0^1 \frac{\phi _j ^{4}}{\left( {1-w_s } \right) ^{5}}\hbox {d}x} \right) \nonumber \\&\quad -\,\alpha _1 \left( {\mathop \int \limits _0^1 \phi _j \phi _j ^{\prime \prime }\left( {\mathop \int \limits _0^1 \left( {\phi _j ^{\prime }} \right) ^{2}\hbox {d}x} \right) \hbox {d}x} \right) \end{aligned}$$
$$\begin{aligned}&F_p =2\beta V_\mathrm{AC} V_\mathrm{DC} \left( {\mathop \int \limits _0^1 \frac{\phi _j }{\left( {1-w_s } \right) ^{2}}\hbox {d}x} \right) ;\nonumber \\&\quad F_s =\beta \frac{V_\mathrm{AC}^2 }{2}\left( {\mathop \int \limits _0^1 \frac{\phi _j }{\left( {1-w_s } \right) ^{2}}\hbox {d}x} \right) \end{aligned}$$
$$\begin{aligned}&F_{\mathrm{ppar}1} =4\beta V_\mathrm{AC} V_\mathrm{DC} \left( {\mathop \int \limits _0^1 \frac{\phi _j ^{2}}{\left( {1-w_s } \right) ^{3}}\hbox {d}x} \right) ;\nonumber \\&\quad F_{\mathrm{spar}1} =\beta V_\mathrm{AC}^2 \left( {\mathop \int \limits _0^1 \frac{\phi _j ^{2}}{\left( {1-w_s } \right) ^{3}}\hbox {d}x} \right) \end{aligned}$$
$$\begin{aligned}&F_{\mathrm{ppar}2} =6\beta V_\mathrm{AC} V_\mathrm{DC} \left( {\mathop \int \limits _0^1 \frac{\phi _j ^{3}}{\left( {1-w_s } \right) ^{4}}\hbox {d}x} \right) ;\nonumber \\&\quad F_{\mathrm{spar}2} =\beta \frac{3 V_\mathrm{AC}^2 }{2}\left( {\mathop \int \limits _0^1 \frac{\phi _j ^{3}}{\left( {1-w_s } \right) ^{4}}\hbox {d}x} \right) \end{aligned}$$
$$\begin{aligned}&F_{\mathrm{ppar}3} =8\beta V_\mathrm{AC} V_\mathrm{DC} \left( {\mathop \int \limits _0^1 \frac{\phi _j ^{4}}{\left( {1-w_s } \right) ^{5}}\hbox {d}x} \right) ;\nonumber \\&\quad F_{\mathrm{spar}3} =2\beta V_\mathrm{AC}^2 \left( {\mathop \int \limits _0^1 \frac{\phi _j ^{4}}{\left( {1-w_s } \right) ^{5}}\hbox {d}x} \right) \end{aligned}$$

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ilyas, S., Alfosail, F.K., Bellaredj, M.L.F. et al. On the response of MEMS resonators under generic electrostatic loadings: experiments and applications. Nonlinear Dyn 95, 2263–2274 (2019). https://doi.org/10.1007/s11071-018-4690-3

Download citation


  • Clamped–clamped microbeam
  • MEMS logic device
  • MEMS electrometer
  • Primary resonance excitation
  • Subharmonic resonance excitation