Abstract
We present an investigation of the dynamic behavior of an electrostatically actuated clamped–clamped microbeam, under the simultaneous excitation of primary and subharmonic resonance. The simultaneous excitation of primary and subharmonic resonances of similar strength is experimentally investigated by using different combinations of AC and DC voltages. It is observed that the response of the resonator is governed by a mixed effect of both excitations. Subharmonic-dominated response shows sharp amplitude transitions and smaller monostable regime, while primary-dominated response shows gradual amplitude transition and larger monostable regime. Two potential applications are experimentally demonstrated. The first is a resonator-based MEMS AND logic gate based on AC only subharmonic excitation. The second is a charge sensor based on the transition from subharmonic-dominated response to primary-dominated response, which is potentially capable of detecting a small amount of electric charges.
This is a preview of subscription content, access via your institution.








References
Rhoads, J.F., Shaw, S.W., Turner, K.L.: Nonlinear dynamics and its applications in micro-and nanoresonators. J. Dyn. Syst. Measur. Control 132, 034001 (2010)
Zhang, W., Turner, K.L.: Application of parametric resonance amplification in a single-crystal silicon micro-oscillator based mass sensor. Sens. Actuat. A Phys. 122, 23–30 (2005)
Wadas, M.J., Tweardy, M., Bajaj, N., Murray, A.K., Chiu, G.T.C., Nauman, E.A., Rhoads, J.F.: Detection of traumatic brain injury protein biomarkers with resonant microsystems. IEEE Sens. Lett. 1, 1–4 (2017)
Mahboob, I., Flurin, E., Nishiguchi, K., Fujiwara, A., Yamaguchi, H.: Interconnect-free parallel logic circuits in a single mechanical resonator. Nat. Commun. 2, 198 (2011)
Hafiz, M.A.A., Kosuru, L., Younis, M.I.: Microelectromechanical reprogrammable logic device. Nat. Commun. 7, 11137 (2016)
Guerra, D.N., Bulsara, A.R., Ditto, W.L., Sinha, S., Murali, K., Mohanty, P.: A noise-assisted reprogrammable nanomechanical logic gate. Nano Lett. 10, 1168–1171 (2010)
Ilyas, S., Arevalo, A., Bayes, E., Foulds, I.G., Younis, M.I.: Torsion based universal MEMS logic device. Sens. Actuat. A Phys. 236, 150–158 (2015)
Sinha, N., Jones, T.S., Guo, Z., Piazza, G.: Body-biased complementary logic implemented using AlN piezoelectric MEMS switches. J. Microelectromechanical Syst. 21, 484–496 (2012)
Wong, A.C., Nguyen, C.C.: Micromechanical mixer-filters (mixlers). J. Microelectromechanical Syst. 13, 100–112 (2004)
Ilyas, S., Chappanda, K.N., Younis, M.I.: Exploiting nonlinearities of micro-machined resonators for filtering applications. Appl. Phys. Lett. 110, 253508 (2017)
Kacem, N., Hentz, S., Pinto, D., Reig, B., Nguyen, V.: Nonlinear dynamics of nanomechanical beam resonators: improving the performance of NEMS-based sensors. Nanotechnology 20, 275501 (2009)
Kacem, N., Arcamone, J., Perez-Murano, F., Hentz, S.: Dynamic range enhancement of nonlinear nanomechanical resonant cantilevers for highly sensitive NEMS gas/mass sensor applications. J. Micromec. Microeng. 20, 045023 (2010)
Dick, N., Grutzik, S., Wallin, C.B., Ilic, B.R., Krylov, S., Zehnder, A.T.: Actuation of higher harmonics in large arrays of micromechanical cantilevers for expanded resonant peak separation. J. Vib. Acoust. 140, 051013 (2018)
Westra, H.J.R., Poot, M., Van Der Zant, H.S.J., Venstra, W.J.: Nonlinear modal interactions in clamped–clamped mechanical resonators. Phys. Rev. Lett. 105, 117205 (2010)
Castellanos-Gomez, A., Meerwaldt, H.B., Venstra, W.J., van der Zant, H.S., Steele, G.A.: Strong and tunable mode coupling in carbon nanotube resonators. Phys. Rev. B 86, 041402 (2012)
Li, L.L., Polunin, P.M., Dou, S., Shoshani, O., Scott Strachan, B., Jensen, J.S., Turner, K.L.: Tailoring the nonlinear response of MEMS resonators using shape optimization. Appl. Phys. Lett. 110, 081902 (2017)
Castellanos-Gomez, A., van Leeuwen, R., Buscema, M., van der Zant, H.S., Steele, G.A., Venstra, W.J.: Single-layer MoS2 mechanical resonators. Adv. Mater. 25, 6719–6723 (2013)
Suh, J., LaHaye, M.D., Echternach, P.M., Schwab, K.C., Roukes, M.L.: Parametric amplification and back-action noise squeezing by a qubit-coupled nanoresonator. Nano Lett. 10, 3990–3994 (2010)
Eichler, A., Chaste, J., Moser, J., Bachtold, A.: Parametric amplification and self-oscillation in a nanotube mechanical resonator. Nano Lett. 11, 2699–2703 (2011)
Rhoads, J.F., Shaw, S.W., Turner, K.L., Baskaran, R.: Tunable microelectromechanical filters that exploit parametric resonance. J. Vib. Acoust. 127, 423–430 (2005)
Cassella, C., Strachan, S., Shaw, S.W., Piazza, G.: Phase noise suppression through parametric filtering. Appl. Phys. Lett. 110, 063503 (2017)
Ilyas, S., Ramini, A., Arevalo, A., Younis, M.I.: An experimental and theoretical investigation of a micromirror under mixed-frequency excitation. J. Microelectromechanical Syst. 24, 1124–1131 (2005)
Ilyas, S., Jaber, N., Younis, M.I.: MEMS logic using mixed-frequency excitation. J. Microelectromechanical Syst. 26, 1140–1146 (2017)
Davies, H.G., Rajan, S.: Random superharmonic and subharmonic response: multiple time scaling of a Duffing oscillator. J. Sound Vib. 126, 195–208 (1988)
Nayfeh, A.H.: Introduction to Perturbation Techniques. Wiley, London (2011)
Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, London (2008)
Abdel-Rahman, E.M., Nayfeh, A.H.: Secondary resonances of electrically actuated resonant microsensors. J. Micromech. Microeng. 13, 491 (2003)
Nayfeh, A.H.: The response of single degree of freedom systems with quadratic and cubic non-linearities to a subharmonic excitation. J. Sound Vib. 89, 457–470 (1983)
Nayfeh, A.H., Younis, M.I.: Dynamics of MEMS resonators under superharmonic and subharmonic excitations. J. Micromech. Microeng. 15, 1840 (2005)
Nayfeh, A.H.: The response of non-linear single-degree-of-freedom systems to multifrequency excitations. J. Sound Vib. 102, 403–414 (1985)
Younis, M.I., Alsaleem, F.: Exploration of new concepts for mass detection in electrostatically-actuated structures based on nonlinear phenomena. J. Comput. Nonlinear Dyn. 4, 021010 (2009)
Ouakad, H.M., Younis, M.I.: Nonlinear dynamics of electrically actuated carbon nanotube resonators. J. Comput. Nonlinear Dyn. 5, 011009 (2010)
Nayfeh, A.H.: Quenching of primary resonance by a superharmonic resonance. J. Sound Vib. 92, 363–377 (1984)
Jin, Z., Wang, Y.: Electrostatic resonator with second superharmonic resonance. Sens. Actuat. A Phys. 64, 273–279 (1998)
Younis, M.I., Ouakad, H.M., Alsaleem, F.M., Miles, R., Cui, W.: Nonlinear dynamics of MEMS arches under harmonic electrostatic actuation. J. Microelectromechanical Syst. 19, 647–656 (2010)
Alsaleem, F.M., Younis, M.I., Ouakad, H.M.: On the nonlinear resonances and dynamic pull-in of electrostatically actuated resonators. J. Micromech. Microeng. 19, 045013 (2009)
Chappanda, K.N., Ilyas, S., Kazmi, S.N.R., Holguin-Lerma, J., Batra, N.M., Costa, P.M.F.J., Younis, M.I.: A single nano cantilever as a reprogrammable universal logic gate. J. Micromech. Microeng. 27, 045007 (2017)
Kazmi, S.N., Hafiz, M.A., Chappanda, K.N., Ilyas, S., Holguin, J., Costa, P.M., Younis, M.I.: Tunable nanoelectromechanical resonator for logic computations. Nanoscale 9, 3449–3457 (2017)
Wenzler, J.S., Dunn, T., Toffoli, T., Mohanty, P.: A nanomechanical Fredkin gate. Nano Lett. 14, 89–93 (2013)
Jalil, J., Zhu, Y., Ekanayake, C., Ruan, Y.: Sensing of single electrons using micro and nano technologies: a review. Nanotechnology 28, 142002 (2017)
Zhao, J., Ding, H., Xie, J.: Electrostatic charge sensor based on a micromachined resonator with dual micro-levers. Appl. Phys. Lett. 106, 233505 (2015)
Chen, D., Zhao, J., Wang, Y., Xie, J.: An electrostatic charge sensor based on micro resonator with sensing scheme of effective stiffness perturbation. J. Micromech. Microeng. 27, 065002 (2017)
Zhang, H., Huang, J., Yuan, W., Chang, H.: A high-sensitivity micromechanical electrometer based on mode localization of two degree-of-freedom weakly coupled resonators. J. Microelectromechanical Syst. 25, 937–946 (2016)
Younis, M.I.: MEMS Linear and Nonlinear Statics and Dynamics. Springer, Berlin (2011)
Abdel-Rahman, E.M., Younis, M.I., Nayfeh, A.H.: Characterization of the mechanical behavior of an electrically actuated microbeam. J. Micromech. Microeng. 12, 759 (2002)
Younis, M.I., Nayfeh, A.H.: A study of the nonlinear response of a resonant microbeam to an electric actuation. Nonlin. Dynam. 31, 91–117 (2003)
Saghir, S., Bellaredj, M.L., Ramini, A., Younis, M.I.: Initially curved microplates under electrostatic actuation: theory and experiment. J. Micromech. Microeng. 26, 095004 (2016)
Al Hafiz, M.A., Ilyas, S., Ahmed, S., Younis, M.I., Fariborzi, H.: A microbeam resonator with partial electrodes for logic and memory elements. IEEE J. Explor. Solid State Comput. Devices Circuits 3, 83–92 (2017)
Acknowledgements
This publication is based upon work supported by the King Abdullah University of Science and Technology (KAUST) office of sponsored research OSR under Award No. OSR-2016-CRG5-3001.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Appendix
Appendix
Rights and permissions
About this article
Cite this article
Ilyas, S., Alfosail, F.K., Bellaredj, M.L.F. et al. On the response of MEMS resonators under generic electrostatic loadings: experiments and applications. Nonlinear Dyn 95, 2263–2274 (2019). https://doi.org/10.1007/s11071-018-4690-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11071-018-4690-3