Reconstruction of ensembles of nonlinear neurooscillators with sigmoid coupling function


Inferring information about interactions between oscillatory systems from their time series is a highly debated problem. However, many approaches for solving this problem consider either linear systems or linear couplings. We propose a method for the reconstruction of ensembles of nonlinearly coupled neurooscillators described by first-order nonlinear differential equations. The method is based on the minimization of a special target function for each oscillator in the ensemble separately. To find the solution of optimization problem the nonlinear least-squares routine is used. The method does not exploit any parameterization for approximation of nonlinear functions of individual nodes. In addition, an original two-step algorithm for the removal of spurious couplings is proposed based on the clusterization of coefficients of the reconstructed coupling functions and the analysis of their variation. The method efficiency is shown for periodic and chaotic vector time series for ensembles of different size that contain from 8 to 32 oscillators. These oscillators have a cubic nonlinearity and sigmoid is considered as a coupling function. The effect of measurement noise on the results of coupling architecture reconstruction is studied in detail and the method is shown to be effective for relatively high noise (signal to noise ratio equal to eight).

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Boccaletti, S., Latora, V., Morenod, Y., Chavez, M., Hwang, D.-U.: Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. 2.

    Sporns, O., Chialvo, D.R., Kaiser, M., Hilgetag, C.C.: Organization, development and function of complex brain networks. Trends Cognit. Sci. 8(9), 418–425 (2004)

    Article  Google Scholar 

  3. 3.

    Sompolinsky, H., Crisanti, A., Sommers, H.E.: Chaos in random neural networks. Phys. Rev. Lett. 61(3), 259–262 (1988)

    Article  MathSciNet  Google Scholar 

  4. 4.

    Sysoev, I.V., Ponomarenko, V.I., Pikovsky, A.: Reconstruction of coupling architecture of neural field networks from vector time series. Commun. Nonlinear Sci. Numer. Simulat. 57, 342–351 (2018)

    Article  MathSciNet  Google Scholar 

  5. 5.

    Shandilya, S.G., Timme, M.: Inferring network topology from complex dynamics. N. J. Phys. 13(1), 013004 (2011)

    Article  Google Scholar 

  6. 6.

    Sysoev, I.V., Ponomarenko, V.I., Kulminsky, D.D., Prokhorov, M.D.: Recovery of couplings and parameters of elements in networks of time-delay systems from time series. Phys. Rev. E 94, 052207 (2016)

    Article  Google Scholar 

  7. 7.

    Pikovsky, A.: Reconstruction of a neural network from a time series of firing rates. Phys. Rev. E 93, 062313 (2016)

    Article  MathSciNet  Google Scholar 

  8. 8.

    Xu, Y., Zhou, W., Fang, J.: Topology identification of the modified complex dynamical network with non-delayed and delayed coupling. Nonlinear Dyn. 68(1–2), 195–205 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. 9.

    Yang, X., Wei, T.: Revealing network topology and dynamical parameters in delay-coupled complex network subjected to random noise. Nonlinear Dyn. 82, 319–332 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. 10.

    Mokhov, I.I., Smirnov, D.A.: El Niño – southern oscillation drives north atlantic oscillation as revealed with nonlinear techniques from climatic indices. Geophys. Res. Lett. 33, L03708 (2006)

    Article  Google Scholar 

  11. 11.

    Kaminski, M., Brzezicka, A., Kaminski, J., Blinowska, K.: Measures of coupling between neural populations based on Granger causality principle. Front. Comput. Neurosci. 10(OCT), 114 (2016)

    Google Scholar 

  12. 12.

    Porta, A., Faes, L.: Wiener–Granger causality in network physiology with applications to cardiovascular control and neuroscience. Proceedings of the IEEE, 12 (2015)

  13. 13.

    Chen, Y., Rangarajan, G., Feng, J., Ding, M.: Analyzing multiple nonlinear time series with extended Granger causality. Phys. Lett. A 324(1), 26–35 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. 14.

    Kornilov, M.V., Medvedeva, T.M., Bezruchko, B.P., Sysoev, I.V.: Choosing the optimal model parameters for Granger causality in application to time series with main timescale. Chaos, Solitons Fractal. 82, 11–21 (2016)

    Article  MATH  Google Scholar 

  15. 15.

    Baccala, L., Sameshima, K.: Partial directed coherence: a new concept in neural structure determination. Biol. Cybern. 84, 463–474 (2001)

    Article  MATH  Google Scholar 

  16. 16.

    Kamiński, M., Ding, M., Truccolo, W.A., Bressler, S.L.: Evaluating causal relations in neural systems: Granger causality, directed transfer function and statistical assessment of significance. Biol. Cybern. 85, 145–157 (2001)

    Article  MATH  Google Scholar 

  17. 17.

    Rosenblum, M.G., Pikovsky, A.S.: Detecting direction of coupling in interacting oscillators. Phys. Rev. E 64, 045202(R) (2001)

    Article  Google Scholar 

  18. 18.

    Tokuda, I.T., Jain, S., Kiss, I.Z., Hudson, J.L.: Inferring phase equations from multivariate time series. Phys. Rev. Lett. 99, 064101 (2007)

    Article  Google Scholar 

  19. 19.

    Koutlis, C., Kugiumtzis, D.: Discrimination of coupling structures using causality networks from multivariate time series. Chaos 26, 093120 (2016)

    Article  Google Scholar 

  20. 20.

    Kralemann, B., Pikovsky, A., Rosenblum, M.: Reconstructing phase dynamics of oscillator networks. Chaos 21, 025104 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. 21.

    Wu, X., Wang, W., Zheng, W.X.: Inferring topologies of complex networks with hidden variables. Phys. Rev. E 86, 046106 (2012)

    Article  Google Scholar 

  22. 22.

    Yang, G., Wang, L., Wang, X.: Reconstruction of complex directional networks with group lasso nonlinear conditional Granger causality. Sci. Rep. 7(1), 2991 (2017)

    Article  Google Scholar 

  23. 23.

    Smirnov, D.A., Andrzejak, R.G.: Detection of weak directional coupling: phase-dynamics approach versus state-space approach. Phys. Rev. E 71, 036207 (2005)

    Article  MathSciNet  Google Scholar 

  24. 24.

    De Feo, O., Carmeli, C.: Estimating interdependences in networks of weakly coupled deterministic systems. Phys. Rev. E 77(2), 026711 (2008)

    Article  MathSciNet  Google Scholar 

  25. 25.

    Wu, X., Sun, Z., Liang, F., Yu, C.: Online estimation of unknown delays and parameters in uncertain time delayed dynamical complex networks via adaptive observer. Nonlinear Dyn. 73(3), 1753–1768 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. 26.

    Shemyakin, V., Haario, H.: Online identification of large-scale chaotic system. Nonlinear Dyn. 93(2), 961–975 (2018)

    Article  Google Scholar 

  27. 27.

    Wang, W., Yang, R., Lai, Y., Kovanis, V., Grebogi, C.: Predicting catastrophes in nonlinear dynamical systems by compressive sensing. Phys. Rev. Lett. 106, 154101 (2011)

    Article  Google Scholar 

  28. 28.

    Han, X., Shen, Z., Wang, W.-X., Di, Z.: Robust reconstruction of complex networks from sparse data. Phys. Rev. Lett. 114, 28701 (2015)

    Article  Google Scholar 

  29. 29.

    Brunton, S., Proctor, J., Kutz, J.: Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc. Natl. Acad. Sci. U. S. A. 113, 3932–7 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. 30.

    Mangan, N., Brunton, S., Proctor, J., Kutz, J.: Inferring biological networks by sparse identification of nonlinear dynamics. IEEE Trans. Mol. Biol. Multi-Scale Commun. 2, 52–63 (2016)

    Article  Google Scholar 

  31. 31.

    Casadiego, J., Nitzan, M., Hallerberg, S., Timme, M.: Model-free inference of direct network interactions from nonlinear collective dynamics. Nat. Commun. 8, 2192 (2017)

    Article  Google Scholar 

  32. 32.

    Gouesbet, G., Meunier-Guttin-Cluzel, G., Menard, O.: Chaos and its Reconstruction. Nova Science Publishers, New York (2003)

    Google Scholar 

  33. 33.

    Bezruchko, B.P., Smirnov, Da: Extracting Knowledge From Time Series: (An Introduction to Nonlinear Empirical Modeling). Springer Series in Synergetics. Springer, New York (2010)

    Google Scholar 

  34. 34.

    Wang, W.-X., Lai, Y.-C., Grebogi, C.: Data based identification and prediction of nonlinear and complex dynamical systems. Phys. Rep. 644, 1–76 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. 35.

    Timme, M., Casadiego, J.: Revealing networks from dynamics: an introduction. J. Phys. A Math. Theor. 47, 343001 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. 36.

    Smirnov, D.A.: Quantifying causal couplings via dynamical effects: a unifying perspective. Phys. Rev. E 90, 062921 (2014)

    Article  Google Scholar 

  37. 37.

    Richards, F.J.: A flexible growth function for empirical use. J. Exp. Bot. 10(2), 290–300 (1959)

    Article  Google Scholar 

  38. 38.

    Levenberg, K.: A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 2, 164–168 (1944)

    Article  MathSciNet  MATH  Google Scholar 

  39. 39.

    Marquardt, D.: An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl. Math. 11(2), 431–441 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  40. 40.

    Coleman, T.F., Li, Y.: An interior trust region approach for nonlinear minimization subject to bounds. SIAM J. Opt. 6, 418–445 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  41. 41.

    Kera, H., Hasegawa, Y.: Noise-tolerant algebraic method for reconstruction of nonlinear dynamical systems. Nonlinear Dyn. 85(1), 675–692 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  42. 42.

    Upadhyay, R.K., Mondal, A., Paul, C.: A method for estimation of parameters in a neural model with noisy measurements. Nonlinear Dyn. 85(4), 2521–2533 (2016)

    Article  MathSciNet  Google Scholar 

  43. 43.

    Savitzky, A., Golay, M.: Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 38(8), 1627–1639 (1964)

    Article  Google Scholar 

  44. 44.

    Moré, J.J., Sorensen, D.C., Hillstrom, K.E., Garbow, B.S.: The minpack project. In: Cowell, W.J. (ed.) Sources and Development of Mathematical Software, pp. 88–111. Prentice-Hall, Upper Saddle River (1984)

    Google Scholar 

  45. 45.

    Millman, K.J., Aivazis, M.: Python for scientists and engineers. Comput. Sci. Eng. 13, 9–12 (2011)

    Article  Google Scholar 

  46. 46.

    Rosenstein, M.T., Collins, J.J., De Luca, C.J.: A practical method for calculating largest Lyapunov exponents from small data sets. Physica D: Nonlinear Phenom. 65, 117–134 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  47. 47.

    Baake, E., Baake, M., Bock, H., Briggs, K.: Fitting ordinary differential equations to chaotic data. Phys. Rev. A 45(8), 5524–5529 (1992)

    Article  Google Scholar 

  48. 48.

    Sysoev, I.V., Smirnov, D.A., Bezruchko, B.P.: Identification of chaotic systems with hidden variables (modified Bock’s algorithm). Chaos, Solitons Fractal. 29, 82–90 (2006)

    Article  MATH  Google Scholar 

  49. 49.

    Smirnov, D.A., Sysoev, I.V., Seleznev, E.P., Bezruchko, B.P.: Global reconstruction from nonstationary data. Tech. Phys. Lett. 29(10), 824–827 (2003)

    Article  Google Scholar 

  50. 50.

    Lüttjohann, A., van Luijtelaar, G.: The dynamics of cortico-thalamo-cortical interactions at the transition from pre-ictal to ictal lfps in absence epilepsy. Neurobiol. Dis. 47, 47–60 (2012)

    Article  Google Scholar 

  51. 51.

    Coenen, A.M.L., van Luijtelaar, E.L.J.M.: Genetic animal models for absence epilepsy: a review of the WAG/Rij strain of rats. Behav. Genet. 33, 635–655 (2003)

    Article  Google Scholar 

  52. 52.

    Jun, J.J., Steinmetz, N.A., Siegle, J.H., Denman, D.J., Bauza, M., Barbarits, B., Lee, A.K., Anastassiou, C.A., Çağatay Aydın, A.A., Barbic, M., Blanche, T.J., Bonin, V., Couto, J., Dutta, B., Gratiy, S.L., Gutnisky, D.A., Häusser, M., Karsh, B., Ledochowitsch, P., Lopez, C.M., Mitelut, C., Musa, S., Okun, M., Pachitariu, M., Putzeys, J., Rich, P.D., Rossant, C., lung Sun, W., Svoboda, K., Carandini, M., Harris, K.D., Koch, C., O’Keefe, J., Harris, T.D.: Fully integrated silicon probes for high-density recording of neural activity. Nature 551, 232–236 (2017)

    Article  Google Scholar 

Download references


This research was funded by the Russian Science Foundation, Grant No. 14-12-00291.

Author information



Corresponding author

Correspondence to Ilya V. Sysoev.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sysoev, I.V., Ponomarenko, V.I. & Prokhorov, M.D. Reconstruction of ensembles of nonlinear neurooscillators with sigmoid coupling function. Nonlinear Dyn 95, 2103–2116 (2019).

Download citation


  • Network reconstruction
  • Time series
  • Neurooscillators
  • Nonlinear coupling