Combined open-loop and funnel control for underactuated multibody systems

Abstract

We consider tracking control for multibody systems which are modeled using generalized coordinates. Utilizing the two-degree- of-freedom approach to controller design, we combine a feedforward with a feedback controller. The feedforward control input is computed using the method of servo-constraints, which relies on an inverse model of the system. The feedback control input is generated by a dynamic output feedback which consists of the combination of a funnel controller with a funnel pre-compensator. This feedback controller is model free and hence inherently robust. The control design is restricted to multibody systems with relative degree two or three which have input-to-state stable internal dynamics. In the main result, we prove that the proposed controller is able to guarantee prescribed performance of the tracking error even in the presence of uncertainties and disturbances. We illustrate the application of the control design by a mass on car system (single-input, single-output) and a planar robotic manipulator (two-input, two-output). In the case of relative degree two, these systems contain an unknown friction term.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    Altmann, R., Betsch, P., Yang, Y.: Index reduction by minimal extension for the inverse dynamics simulation of cranes. Multibody Syst. Dyn. 36(3), 295–321 (2016)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Altmann, R., Heiland, J.: Simulation of multibody systems with servo constraints through optimal control. Multibody Syst. Dyn. 40(1), 75–98 (2017)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Armstrong-Hélouvry, B., Dupont, P.E., Canudas-de Wit, C.: A survey of models, analysis tools and compensation methods for the control of machines with friction. Automatica 30(7), 1083–1138 (1994)

    Article  Google Scholar 

  4. 4.

    Berger, T.: On differential-algebraic control systems. Ph.D. Thesis, Institut für Mathematik, Technische Universität Ilmenau, Universitätsverlag Ilmenau, Germany (2014)

  5. 5.

    Berger, T., Lê, H.H., Reis, T.: Funnel control for nonlinear systems with known strict relative degree. Automatica 87, 345–357 (2018). https://doi.org/10.1016/j.automatica.2017.10.017

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Berger, T., Reis, T.: Zero dynamics and funnel control for linear electrical circuits. J. Frankl. Inst. 351(11), 5099–5132 (2014)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Berger, T., Reis, T.: Funnel control via funnel pre-compensator for minimum phase systems with relative degree two. IEEE Trans. Autom. Control 63(7), 2264–2271 (2018). https://doi.org/10.1109/TAC.2017.2761020

    Article  MATH  Google Scholar 

  8. 8.

    Berger, T., Reis, T.: The funnel pre-compensator. Int. J. Robust Nonlinear Control 28(16), 4747–4771 (2018)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Betsch, P., Altmann, R., Yang, Y.: Numerical integration of underactuated mechanical systems subjected to mixed holonomic and servo constraints. In: Font-Llagunes, J.M. (ed.) Multibody Dynamics, Computational Methods in Applied Sciences, vol. 42, pp. 1–18. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30614-8_1

    Google Scholar 

  10. 10.

    Betsch, P., Quasem, M., Uhlar, S.: Numerical integration of discrete mechanical systems with mixed holonomic and control constraints. J. Mech. Sci. Technol. 23(4), 1012–1018 (2009)

    Article  Google Scholar 

  11. 11.

    Blajer, W.: Index of differential-algebraic equations governing the dynamics of constrained mechanical systems. Appl. Math. Model. 16(2), 70–77 (1992)

    Article  Google Scholar 

  12. 12.

    Blajer, W., Kołodziejczyk, K.: A geometric approach to solving problems of control constraints: theory and a DAE framework. Multibody Syst. Dyn. 11(4), 343–364 (2004)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Blajer, W., Kołodziejczyk, K.: Improved DAE formulation for inverse dynamics simulation of cranes. Multibody Syst. Dyn. 25(2), 131–143 (2011)

    Article  Google Scholar 

  14. 14.

    Brenan, K.E., Campbell, S.L., Petzold, L.R.: Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations. North-Holland, Amsterdam (1989)

  15. 15.

    Byrnes, C.I., Isidori, A.: A frequency domain philosophy for nonlinear systems, with application to stabilization and to adaptive control. In: Proceedings of 23rd IEEE Conference on Decision and Control, vol. 1, pp. 1569–1573 (1984)

  16. 16.

    Campbell, S.L.: High-index differential algebraic equations. Mech. Struct. Mach. 23(2), 199–222 (1995)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Chen, D., Paden, B.: Stable inversion of nonlinear non-minimum phase systems. Int. J. Control 64(1), 81–97 (1996)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Devasia, S., Chen, D., Paden, B.: Nonlinear inversion-based output tracking. IEEE Trans. Autom. Control 41(7), 930–942 (1996)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Fumagalli, A., Masarati, P., Morandini, M., Mantegazza, P.: Control constraint realization for multibody systems. J. Comput. Nonlinear Dyn. 6(1), 011,002-011,002-8 (2010)

    Google Scholar 

  20. 20.

    Gear, C.W.: Differential-algebraic equation index transformations. SIAM J. Sci. Stat. Comput. 9, 39–47 (1988)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Gross, D., Hauger, W., Schröder, J., Wall, W.: Technische Mechanik 1: Statik, 13th edn. Springer, Berlin (2016)

    Google Scholar 

  22. 22.

    Hackl, C.M.: Non-identifier Based Adaptive Control in Mechatronics-Theory and Application. Lecture Notes in Control and Information Sciences, vol. 466. Springer, Cham (2017)

    Google Scholar 

  23. 23.

    Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-algebraic Problems, Springer Series in Computational Mathematics, vol. 14, 2nd edn. Springer, Berlin (1996)

    Google Scholar 

  24. 24.

    Ilchmann, A.: Decentralized tracking of interconnected systems. In: Hüper, K., Trumpf, J. (eds.) Mathematical System Theory—Festschrift in Honor of Uwe Helmke on the Occasion of his Sixtieth Birthday, pp. 229–245. CreateSpace, Scotts Valley (2013)

    Google Scholar 

  25. 25.

    Ilchmann, A., Mueller, M.: Time-varying linear systems: relative degree and normal form. IEEE Trans. Autom. Control 52(5), 840–851 (2007)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Ilchmann, A., Ryan, E.P.: High-gain control without identification: a survey. GAMM Mitt. 31(1), 115–125 (2008)

    MathSciNet  Article  Google Scholar 

  27. 27.

    Ilchmann, A., Ryan, E.P., Sangwin, C.J.: Tracking with prescribed transient behaviour. ESAIM: Control, Optimisation and Calculus of Variations 7, 471–493 (2002)

    MathSciNet  MATH  Google Scholar 

  28. 28.

    Ilchmann, A., Trenn, S.: Input constrained funnel control with applications to chemical reactor models. Syst. Control Lett. 53(5), 361–375 (2004)

    MathSciNet  Article  Google Scholar 

  29. 29.

    Isidori, A.: Nonlinear Control Systems. Communications and Control Engineering Series, 3rd edn. Springer, Berlin (1995)

    Google Scholar 

  30. 30.

    Kunkel, P., Mehrmann, V.: Differential-Algebraic Equations. Analysis and Numerical Solution. EMS Publishing House, Zürich (2006). https://doi.org/10.4171/017

    Google Scholar 

  31. 31.

    Langhaar, H.: Dimensional Analysis and Theory of Models. Wiley, New York (1951)

    Google Scholar 

  32. 32.

    Leine, R.I., Nijmeijer, H.: Dynamics and Bifurcations of Non-smooth Mechanical Systems. Lecture Notes in Applied and Computational Mechanics, vol. 18. Springer, Berlin (2004)

    Google Scholar 

  33. 33.

    Otto, S., Seifried, R.: Analysis of servo-constraints solution approaches for underactuated multibody systems. In: Proceedings of IMSD Lisbon 2018, Submitted to Proceedings IMSD 2018 (2017)

  34. 34.

    Otto, S., Seifried, R.: Open-loop control of underactuated mechanical systems using servo-constraints: analysis and some examples. Technical Report, Institute of Mechanical and Ocean Engineering, Hamburg University of Technology (2017). (To appear in DAE Forum)

  35. 35.

    Otto, S., Seifried, R.: Real-time trajectory control of an overhead crane using servo-constraints. Multibody Syst. Dyn. 42(1), 1–17 (2018). https://doi.org/10.1007/s11044-017-9569-4

    MathSciNet  Article  MATH  Google Scholar 

  36. 36.

    Pomprapa, A., Weyer, S., Leonhardt, S., Walter, M., Misgeld, B.: Periodic funnel-based control for peak inspiratory pressure. In: Proceedings of IEEE 54th Annual Conference on Decision and Control, Osaka, Japan, pp. 5617–5622 (2015)

  37. 37.

    Schiehlen, W., Eberhard, P.: Applied Dynamics. Springer, Cham (2014)

    Google Scholar 

  38. 38.

    Seifried, R.: Integrated mechanical and control design of underactuated multibody systems. Nonlinear Dyn. 67(2), 1539–1557 (2012)

    MathSciNet  Article  Google Scholar 

  39. 39.

    Seifried, R.: Two approaches for feedforward control and optimal design of underactuated multibody systems. Multibody Syst. Dyn. 27, 75–93 (2012)

    MathSciNet  Article  Google Scholar 

  40. 40.

    Seifried, R., Blajer, W.: Analysis of servo-constraint problems for underactuated multibody systems. Mech. Sci. 4, 113–129 (2013)

    Article  Google Scholar 

  41. 41.

    Senfelds, A., Paugurs, A.: Electrical drive DC link power flow control with adaptive approach. In: Proceedings of 55th International Scientific Conference on Power and Electrical Engineering of Riga Technical University, Riga, Latvia, pp. 30–33 (2014)

  42. 42.

    Skogestad, S., Postlethwaite, I.: Multivariable Feedback Control: Analysis and Design, 2nd edn. Wiley, Chichester (2005)

    Google Scholar 

  43. 43.

    Sontag, E.D.: Smooth stabilization implies coprime factorization. IEEE Trans. Autom. Control 34(4), 435–443 (1989)

    MathSciNet  Article  Google Scholar 

  44. 44.

    Sontag, E.D.: On the input-to-state stability property. Eur. J. Control 1, 24–36 (1995)

    Article  Google Scholar 

  45. 45.

    Walter, W.: Ordinary Differential Equations. Springer, New York (1998)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Thomas Berger.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

This work was supported by the Klaus Tschira Stiftung and by the German Research Foundation (Deutsche Forschungsgemeinschaft) via the Grants BE 6263/1-1 and SE 1685/6-1.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Berger, T., Otto, S., Reis, T. et al. Combined open-loop and funnel control for underactuated multibody systems. Nonlinear Dyn 95, 1977–1998 (2019). https://doi.org/10.1007/s11071-018-4672-5

Download citation

Keywords

  • Multibody dynamics
  • Underactuated systems
  • Servo-constraints
  • Feedforward control
  • Funnel control