Nonlinear Dynamics

, Volume 95, Issue 2, pp 1673–1686 | Cite as

Effects of noise and synaptic weight on propagation of subthreshold excitatory postsynaptic current signal in a feed-forward neural network

  • Lulu Lu
  • Ya JiaEmail author
  • John Billy Kirunda
  • Ying Xu
  • Mengyan Ge
  • Qiming Pei
  • Lijian Yang
Original Paper


Excitatory postsynaptic current (EPSC) is a biological signal of neurons; the propagation mechanism of subthreshold EPSC signal in neural network and the effects of background noise on the propagation of the subthreshold EPSC signal are still unclear. In this paper, considering a feed-forward neural network with five layers and an external subthreshold EPSC signal imposed on the Hodgkin–Huxley neurons of first layer, the propagation and fidelity of subthreshold EPSC signal in the feed-forward neural network are studied by using the spike timing precision and power norm. It is found that the background noise in each layer is beneficial for the propagation of subthreshold EPSC signal in feed-forward neural network; there exists an optimal background noise intensity at which the propagation speed of subthreshold EPSC signal can be enhanced, and the fidelity between system’s response and subthreshold EPSC signal is preserved. The transmission of subthreshold EPSC signal is shifted from failed propagation to succeed propagation with the increasing of synaptic weight. By regulating the background noise and the synaptic weight, the information of subthreshold EPSC signal is transferred accurately through the feed-forward neural network, both time lag and fidelity between the system’s response and subthreshold EPSC signal are promoted. These results might provide a possible underlying mechanism for enhancing the subthreshold EPSC signal propagation.


Excitatory postsynaptic current Background noise Synaptic weight Feed-forward neural network 



This work was supported by the National Natural Science Foundation of China under Grant Nos.11775091, 11474117, and 11605014.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no potential conflict of interest.


  1. 1.
    Guo, D.Q., Li, C.G.: Signal propagation in feedforward neuronal networks with unreliable synapses. J. Comput. Neurosci. 30, 567–587 (2011)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Wang, C.J., Yang, K.L.: Correlated noise-based switches and stochastic resonance in a bistable genetic regulation system. Eur. Phys. J. B 89, 173 (2016)CrossRefGoogle Scholar
  3. 3.
    Wang, C.J., Yang, K.L., Du, C.Y.: Multiple cross-correlation noise induced transition in a stochastic bistable system. Physica A 470, 261–274 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Wang, C.J., Yi, M., Yang, K.L., et al.: Time delay induced transition of gene switch and stochastic resonance in a genetic transcriptional regulatory model. BMC Syst. Biol. 6, 1–16 (2012)CrossRefGoogle Scholar
  5. 5.
    Jia, Y.B., Gu, H.G.: Transition from double coherence resonances to single coherence resonance in a neuronal network with phase noise. Chaos 25, L453 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Stimberg, M., Hoch, T., Obermayer, K.: The effect of background noise on the precision of pulse packet propagation in feed-forward networks. Neurocomputing 70, 1824–1828 (2007)CrossRefGoogle Scholar
  7. 7.
    Lu, L.L., Jia, Y., Liu, W., Yang, L.: Mixed stimulus-induced mode selection in neural activity driven by high and low frequency current under electromagnetic radiation. Complexity 2017, Article ID 7628537 (2017)Google Scholar
  8. 8.
    Handa, H., Sharma, B.B.: Synchronization of a set of coupled chaotic FitzHugh–Nagumo and Hindmarsh–Rose neurons with external electrical stimulation. Nonlinear Dyn. 85, 1–16 (2016)CrossRefzbMATHGoogle Scholar
  9. 9.
    Yılmaz, E., Ozer, M., Baysal, V., Perc, M.: Autapse-induced multiple coherence resonance in single neurons and neuronal networks. Sci. Rep. 6, 30914 (2016)CrossRefGoogle Scholar
  10. 10.
    Uzuntarla, M., Ozer, M., Ileri, U., et al.: Effects of dynamic synapses on noise delayed response latency of a single neuron. Phys. Rev. E 92, 062710 (2015)CrossRefGoogle Scholar
  11. 11.
    Xu, Y., Jia, Y., Kirunda, J.B., Shen, J., Ge, M., Lu, L., Pei, Q.: Dynamic behaviors in coupled neurons system with the excitatory and inhibitory autapse under electromagnetic induction. Complexity 2018, Article ID 3012743 (2018)Google Scholar
  12. 12.
    Ge, M.Y., Jia, Y., Xu, Y., Yang, L.J.: Mode transition in electrical activities of neuron driven by high and low frequency stimulus in the presence of electromagnetic induction and radiation. Nonlinear Dyn. 91, 515–523 (2018)CrossRefGoogle Scholar
  13. 13.
    Xu, Y., Jia, Y., Ma, J., Alsaedi, A., Ahmad, B.: Synchronization between neurons coupled by memristor. Chaos 104, 435–442 (2017)Google Scholar
  14. 14.
    Yao, C.G., Zhan, M., Shuai, J.W., Ma, J., Kurths, J.: Insensitivity of synchronization to network structure in chaotic pendulum systems with time-delay coupling. Chaos 27, 126702 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Wu, F.Q., Wang, Y., Ma, J., Jin, W.Y., Hobiny, A., Dawson, K.A., et al.: Multi-channels coupling-induced pattern transition in a tri-layer neuronal network. Physica A 493, 54–68 (2018)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Guo, S.L., Ma, J., Alsaedi, A.: Suppression of chaos via control of energy flow. Pramana 90, 39 (2018)CrossRefGoogle Scholar
  17. 17.
    Lu, L.L., Jia, Y., Xu, Y., Ge, M.Y., Yang, L.J., Zhan, X.: Energy dependence on modes of electric activities of neuron driven by different external mixed signals under electromagnetic induction. Sci. China Technol. Sci. (2018).
  18. 18.
    Eichwald, C., Walleczek, J.: Aperiodic stochastic resonance with chaotic input signals in excitable systems. Phys. Rev. E 55, R6315–R6318 (1997)CrossRefGoogle Scholar
  19. 19.
    Wang, H.T., Chen, Y.: Response of autaptic Hodgkin–Huxley neuron with noise to subthreshold sinusoidal signals. Physica A 462, 321–329 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Masoliver, M., Masoller, C.: Subthreshold signal encoding in coupled FitzHugh–Nagumo neurons (2017). arXiv:1711.08309
  21. 21.
    Sun, X.J., Liu, Z.F.: Combined effects of time delay and noise on the ability of neuronal network to detect the subthreshold signal. Nonlinear Dyn. (2018).
  22. 22.
    Yao, Y.G., Yang, L.J., Wang, C.J., Liu, Q., Gui, R., Xiong, J. et al.: Subthreshold periodic signal detection by bounded noise-induced resonance in the FitzHugh–Nagumo neuron. Complexity 2018, Article ID 5632650 (2018)Google Scholar
  23. 23.
    Ge, M.Y., Jia, Y., Kirunda, J.B., et al.: Propagation of firing rate by synchronization in a feed-forward multilayer Hindmarsh–Rose neural network. Neurocomputing 320, 60–68 (2018)CrossRefGoogle Scholar
  24. 24.
    Arredondo, L.T., Perez, C.A.: Spatially coincident vibrotactile noise improves subthreshold stimulus detection. PLoS One 12, e0186932 (2017)CrossRefGoogle Scholar
  25. 25.
    González-Rueda, A., Pedrosa, V., Feord, R.C., Clopath, C., Paulsen, O.: Activity-dependent downscaling of subthreshold synaptic inputs during slow-wave-sleep-like activity in vivo. Neuron 97, 1–9 (2018)CrossRefGoogle Scholar
  26. 26.
    Qin, Y.M., Wang, J., Men, C., et al.: Stochastic resonance in feedforward acupuncture networks. Commun. Nonlinear Sci. 19, 3660–3670 (2014)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Diesmann, M., Gewaltig, M.O., Aertsen, A.: Stable propagation of synchronous spiking in cortical neural networks. Nature 402, 529 (1999)CrossRefGoogle Scholar
  28. 28.
    Moldakarimov, S., Bazhenov, M., Sejnowski, T.J.: Feedback stabilizes propagation of synchronous spiking in cortical neural networks. Proc. Natl. Acad. Sci. USA 112, 2545–2550 (2015)CrossRefGoogle Scholar
  29. 29.
    Yilmaz, E., Baysal, V., Perc, M., et al.: Enhancement of pacemaker induced stochastic resonance by an autapse in a scale-free neuronal network. Sci. China Technol. Sci. 59, 364–370 (2016)CrossRefGoogle Scholar
  30. 30.
    Yilmaz, E., Baysal, V., Ozer, M., et al.: Autaptic pacemaker mediated propagation of weak rhythmic activity across small-world neuronal networks. Physica A 444, 538–546 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Baysal, V., Yılmaz, E., Ozer, M.: Blocking of weak signal propagation via autaptic transmission in scale-free networks. JEEE 17, 3081–3085 (2017)Google Scholar
  32. 32.
    Masuda, N., Aihara, K.: Duality of rate coding and temporal coding in multilayered feedforward networks. Neural. Comput. 15, 103–125 (2003)CrossRefzbMATHGoogle Scholar
  33. 33.
    Ozer, M., Perc, M., Uzuntarla, M., Koklukaya, E.: Weak signal propagation through noisy feedforward neuronal networks. Neuroreport 21, 338–343 (2010)CrossRefGoogle Scholar
  34. 34.
    Wang, J., Han, R., Wei, X., Qin, Y., Yu, H., Deng, B.: Weak signal detection and propagation in diluted feed-forward neural network with recurrent excitation and inhibition. Int. J. Mod. Phys. B. 30, 1550253 (2016)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Wang, Q.Y., Perc, M., Duan, Z.S., Chen, G.R.: Impact of delays and rewiring on the dynamics of small-world neuronal networks with two types of coupling. Physica A 389, 3299–3306 (2010)CrossRefGoogle Scholar
  36. 36.
    Sun, X.J., Perc, M., Kurths, J.: Effects of partial time delays on phase synchronization in Watts–Strogatz small-world neuronal networks. Chaos 27, 053113 (2017)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Guo, D.Q., Wang, Q.Y., Perc, M.: Complex synchronous behavior in interneuronal networks with delayed inhibitory and fast electrical synapses. Phys. Rev. E 85, 878–896 (2012)Google Scholar
  38. 38.
    Wang, Q.Y., Perc, M., Duan, Z.C., Chen, G.R.: Synchronization transitions on scale-free neuronal networks due to finite information transmission delays. Phys. Rev. E 80, 026206 (2009)CrossRefGoogle Scholar
  39. 39.
    Pei, X., Wilkens, L., Moss, F.: Noise-mediated spike timing precision from aperiodic stimuli in an array of Hodgekin–Huxley-type neurons. Phys. Rev. Lett. 77, 4679 (1996)CrossRefGoogle Scholar
  40. 40.
    Tanabe, S., Sato, S., Pakdaman, K.: Response of an ensemble of noisy neuron models to a single input. Phys. Rev. E 60, 7235 (1999)CrossRefGoogle Scholar
  41. 41.
    Whittington, M.A., Jefferys, J.G.R.: Recurrent excitatory postsynaptic potentials induced by synchronized fast cortical oscillations. Proc. Natl. Acad. Sci. USA 94, 12198–12203 (1997)CrossRefGoogle Scholar
  42. 42.
    Xue, M., Atallah, B.V., Scanziani, M.: Equalizing excitation-inhibition ratios across visual cortical neurons. Nature 511, 596–600 (2014)CrossRefGoogle Scholar
  43. 43.
    Clark, K.A., Collingridge, G.L.: Synaptic potentiation of dual-component excitatory postsynaptic currents in the rat hippocampus. J. Physiol. 482, 39–52 (1995)CrossRefGoogle Scholar
  44. 44.
    Forsythe, I.D., Westbrook, G.L.: Slow excitatory postsynaptic currents mediated by N-methyl-D-aspartate receptors on cultured mouse central neurones. J. Physiol. 396, 515–533 (1988)CrossRefGoogle Scholar
  45. 45.
    Sah, P., Hestrin, S., Nicoll, R.A.: Properties of excitatory postsynaptic currents recorded in vitro from rat hippocampal interneurones. J. Physiol. 430, 605–616 (1990)CrossRefGoogle Scholar
  46. 46.
    Smith, A.J., Owens, S., Forsythe, I.D.: Characterisation of inhibitory and excitatory postsynaptic currents of the rat medial superior olive. J. Physiol. 529, 681–98 (2010)CrossRefGoogle Scholar
  47. 47.
    Yang, L.J., Jia, Y., Yi, M.: The effects of electrical coupling on the temporal coding of neural signal in noisy Hodgkin–Huxley neuron ensemble. ICNC 2, 819–823 (2010)Google Scholar
  48. 48.
    Yi, M., Yang, L.J.: Propagation of firing rate by synchronization and coherence of firing pattern in a feed-forward multilayer neural network. Phys. Rev. E 81, 061924 (2010)CrossRefGoogle Scholar
  49. 49.
    Yu, Y.G., Liu, F., Wang, J., et al.: Spike timing precision for a neuronal array with periodic signal. Phys. Lett. A 282, 23–30 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Parmananda, P., Santos, G.J.Escalera, Rivera, M., Showalter, K.: Stochastic resonance of electrochemical aperiodic spike trains. Phys. Rev. E 71, 031110 (2005)CrossRefGoogle Scholar
  51. 51.
    Xu, Y., Jia, Y., Ge, M.Y., et al.: Effects of ion channel blocks on electrical activity of stochastic Hodgkin–Huxley neural network under electromagnetic induction. Neurocomputing 283, 196–204 (2018)CrossRefGoogle Scholar
  52. 52.
    Gautrais, J., Thorpe, S.: Rate coding versus temporal order coding: a theoretical approach. Biosystems 48, 57–65 (1998)CrossRefGoogle Scholar
  53. 53.
    Wang, S.T., Wang, W., Liu, F.: Propagation of firing rate in a feed-forward neuronal network. Phys. Rev. Lett. 96, 018103 (2006)CrossRefGoogle Scholar
  54. 54.
    Shimokawa, T., Rogel, A., Pakdaman, K., Sato, S.: Stochastic resonance and spike-timing precision in an ensemble of leaky integrate and fire neuron models. Phys. Rev. E 59, 3461–3470 (1999)CrossRefGoogle Scholar
  55. 55.
    Xue, M.S., Atallah, B.V., Scanziani, M.: Equalizing excitation-inhibition ratios across visual cortical neurons. Nature 511, 596–600 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of PhysicsCentral China Normal UniversityWuhanChina
  2. 2.School of Physics and Optoelectronic EngineeringYangtze UniversityJingzhouChina

Personalised recommendations