Advertisement

Nonlinear Dynamics

, Volume 95, Issue 2, pp 1599–1614 | Cite as

Spectral method and Bayesian parameter estimation for the space fractional coupled nonlinear Schrödinger equations

  • Hui Zhang
  • Xiaoyun JiangEmail author
Original Paper
  • 176 Downloads

Abstract

In a lot of dynamic processes, the fractional differential operators not only appear as discrete fractional, but they also have a continuous nature in some sense. In the article, we consider the space fractional coupled nonlinear Schrödinger equations. A Legendre spectral scheme is proposed for obtaining the numerical solution of the considered equations. The convergence analysis of the numerical method is discussed, and it is shown to be convergent of spectral accuracy in space and second-order accuracy in time. The conservation laws of the fully discrete system are analyzed rigorously. Moreover, the Bayesian method is given to estimate many parameters of this system. Some numerical results are presented to verify the effectiveness of the proposed approaches.

Keywords

Space fractional coupled nonlinear Schrödinger equations Legendre spectral method Mass and energy conservation Convergence analysis Bayesian parameter estimation 

Notes

Acknowledgements

We would like to express our gratitude to the Editor for taking time to handle the manuscript and to anonymous referees whose constructive comments are very helpful for improving the quality of our paper. This work was supported financially by National Natural Science Foundation of China (Grants Nos. 11472161, 11102102), Natural Science Foundation of Shandong Province (Grant No. ZR2014AQ015) and Independent Innovation Foundation of Shandong University (Grant No. 2013ZRYQ002).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interests regarding the publication of this paper.

References

  1. 1.
    Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus Models and Numerical Methods (Series on Complexity, Nonlinearity and Chaos). World Scientific, Singapore (2012)CrossRefzbMATHGoogle Scholar
  2. 2.
    Tan, W., Fu, C., Fu, C., Xie, W., Cheng, H.: An anomalous subdiffusion model for calcium spark in cardiac myocytes. Appl. Phys. Lett. 91, 3901 (2007)Google Scholar
  3. 3.
    Chen, W., Sun, H.G., Zhang, X.D., Korošak, D.: Anomalous diffusion modeling by fractal and fractional derivatives. Comput. Math. Appl. 59, 1754–1758 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Pang, G.F., Chen, W., Fu, Z.J.: Space-fractional advection–dispersion equations by the Kansa method. J. Comput. Phys. 293, 280–296 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Wu, G.C., Baleanu, D.: Discrete fractional logistic map and its chaos. Nonlinear Dyn. 75, 283–287 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Laskin, N.: Fractional quantum mechanics. Phys. Rev. E 62, 3135–3145 (2000)CrossRefzbMATHGoogle Scholar
  7. 7.
    Laskin, N.: Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 268, 298–305 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Dong, J.P., Xu, M.Y.: Some solutions to the space fractional Schrödinger equation using momentum representation method. J. Math. Phys. 48, 072105 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Guo, X., Xu, M.: Some physical applications of fractional Schrödinger equation. J. Math. Phys. 47, 082104 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Wang, P.D., Huang, C.M.: Structure-preserving numerical methods for the fractional Schrödinger equation. Appl. Numer. Math. 129, 137–158 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Ali, M.N., Husnine, S.M., Saha, A., Bhowmik, S.K., Dhawan, S., Ak, T.: Exact solutions, conservation laws, bifurcation of nonlinear and supernonlinear traveling waves for Sharma–Tasso–Olver equation. Nonlinear Dyn. (2018).  https://doi.org/10.1007/s11071-018-4457-x
  12. 12.
    Ali, M.N., Husnine, S.M., Ak, T., Atangana, A.: Solitary wave solution and conservation laws of higher dimensional Zakharov–Kuznetsov equation with nonlinear self-adjointness. Math. Methods Appl. Sci. (2018).  https://doi.org/10.1002/mma.5180
  13. 13.
    Mirzazadeh, M., Eslami, M., Zerrad, E., Mahmood, M.F., Biswas, A., Belic, M.: Optical solitons in nonlinear directional couplers by sine–cosine function method and Bernoulli’s equation approach. Nonlinear Dyn. 81, 1933–1949 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Biswas, A., Milovic, D.: Optical solitons with log-law nonlinearity. Commun. Nonlinear Sci. Numer. Simul. 15, 3763–3767 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Wang, P.D., Huang, C.M.: An energy conservative difference scheme for the nonlinear fractional Schrödinger equations. J. Comput. Phys. 293, 238–251 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Eslami, M.: Exact traveling wave solutions to the fractional coupled nonlinear Schrödinger equations. Appl. Math. Comput. 285, 141–148 (2016)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Wang, D.L., Xiao, A.G., Yang, W.: A linearly implicit conservative difference scheme for the space fractional coupled nonlinear Schrödinger equations. J. Comput. Phys. 272, 644–655 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Ran, M.H., Zhang, C.J.: A conservative difference scheme for solving the strongly coupled nonlinear fractional Schrödinger equations. Commun. Nonlinear Sci. Numer. Simul. 41, 64–83 (2016)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Agrawal, G.P.: Nonlinear Fibre Optics. Academic, San Diego (1989)Google Scholar
  20. 20.
    Bao, W., Cai, Y.: Mathematical theory and numerical methods for Bose–Einstein condensation. Kinet. Relat. Models 6, 1–135 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)zbMATHGoogle Scholar
  22. 22.
    Guo, B., Han, Y., Xin, J.: Existence of the global smooth solution to the period boundary value problem of fractional nonlinear Schrödinger equation. Appl. Math. Comput. 204, 468–477 (2008)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and Some of their Applications, vol. 198. Academic Press, San Diego (1998)zbMATHGoogle Scholar
  24. 24.
    Kirkpatrick, K., Lenzmann, E., Staffilani, G.: On the continuum limit for discrete NLS with long-range lattice interactions. Commun. Math. Phys. 317(3), 563–591 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Leble, S., Reichel, B.: Coupled nonlinear Schrödinger equations in optic fibers theory: from general to solitonic aspects. Eur. Phys. J. Spec. Top. 173, 5–55 (2009)CrossRefGoogle Scholar
  26. 26.
    Bao, W., Jaksch, D.: An explicit unconditionally stable numerical method for solving damped nonlinear Schrödinger equations with a focusing nonlinearity. SIAM J. Numer. Anal. 41, 1406–1426 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Guo, Q., He, X.M.: Least energy solutions for a weakly coupled fractional Schrödinger system. Nonlinear Anal. 132, 141–159 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Wei, L.L., Zhang, X.D., Kumar, S., Yildirim, A.: A numerical study based on an implicit fully discrete local discontinuous Galerkin method for the time-fractional coupled Schrödinger system. Comput. Math. Appl. 64, 2603–2615 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Franck, I.M., Koutsourelakis, P.S.: Multimodal, high-dimensional, model-based, Bayesian inverse problems with applications in biomechanics. J. Comput. Phys. 329, 91–125 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Bisaillon, P., Sandhu, R., Khalil, M., Pettit, C., Poirel, D., Sarkar, A.: Bayesian parameter estimation and model selection for strongly nonlinear dynamical systems. Nonlinear Dyn. 82, 1061–1080 (2015)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Elizalde, E., Urteaga, R., Koropecki, R.R., Berli, C.L.A.: Inverse problem of capillary filling. Phys. Rev. Lett. 112, 134502 (2014)CrossRefGoogle Scholar
  32. 32.
    Pacitti, A., Peigney, M., Bourquin, F., Lacarbonara, W.: Experimental data based cable tension identification via nonlinear static inverse problem. Procedia Eng. 199, 453–458 (2017)CrossRefGoogle Scholar
  33. 33.
    Chen, H.B., Ding, F., Xiao, Y.S.: Decomposition-based least squares parameter estimation algorithm for input nonlinear systems using the key term separation technique. Nonlinear Dyn. 79, 2027–2035 (2015)CrossRefzbMATHGoogle Scholar
  34. 34.
    Gu, X.J., Gao, L.: A new method for parameter estimation of edge-preserving regularization in image restoration. J. Comput. Appl. Math. 225, 478–486 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Xu, L.: Application of the Newton iteration algorithm to the parameter estimation for dynamical systems. J. Comput. Appl. Math. 288, 33–43 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Pang, G.F., Perdikaris, P., Cai, W., Karniadakis, G.E.: Discovering variable fractional orders of advection-dispersion equations from field data using multi-fidelity Bayesian optimization. J. Comput. Phys. 348, 694–714 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Zhang, H., Jiang, X.Y., Wang, C., Chen, S.Z.: Crank–Nicolson Fourier spectral methods for the space fractional nonlinear Schrödinger equation and its parameter estimation. Int. J. Comput. Math.  https://doi.org/10.1080/00207160.2018.1434515
  38. 38.
    Zeng, F., Liu, F., Li, C., Burrage, K., Turner, I., Anh, V.: Crank–Nicolson ADI spectral method for the two-dimensional Riesz space fractional nonlinear reaction–diffusion equation. SIAM J. Numer. Anal. 52, 2599–2622 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Fornberg, B.: High-order finite differences and the pseudospectral method on staggered grids. SIAM J. Numer. Anal. 27, 904–918 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Bhrawy, A.H., Doha, E.H., Baleanu, D., Ezz-Eldien, S.S.: A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations. J. Comput. Phys. 293, 142–156 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Bhrawy, A.H., Alzaidy, J.F., Abdelkawy, M.A., Biswas, A.: Jacobi spectral collocation approximation for multi-dimensional time-fractional Schrödinger equations. Nonlinear Dyn. 84, 1553–1567 (2016)CrossRefGoogle Scholar
  42. 42.
    Shen, J., Tang, T., Wang, L.L.: Spectral Methods. Springer, Berlin (2011)CrossRefzbMATHGoogle Scholar
  43. 43.
    Zhang, J., Xu, C.J.: Finite difference/spectral approximations to a water wave model with a nonlocal viscous term. Appl. Math. Model. 38, 4912–4925 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Li, M., Huang, C.M., Wang, P.D.: Galerkin finite element method for nonlinear fractional Schrödinger equations. Numer. Algorithms 74, 499–525 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Liu, P., Shi, Q., Lll, H.D., Voth, G.A.: A Bayesian statistics approach to multiscale coarse graining. J. Chem. Phys. 129, 214114 (2008)CrossRefGoogle Scholar
  46. 46.
    Wang, J.B., Zabaras, N.: Hierarchical Bayesian models for inverse problems in heat conduction. Inverse Probl. 21, 183–211 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Lee, H.L., Lai, T.H., Chen, W.L., Yang, Y.C.: An inverse hyperbolic heat conduction problem in estimating surface heat flux of a living skin tissue. Appl. Math. Model. 37, 2630–2643 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Craiem, D., Rojo, F.J., Atienza, J.M., Armentano, R.L., Guinea, G.V.: Fractional-order viscoelasticity applied to describe uniaxial stress relaxation of human arteries. Phys. Med. Biol. 53, 4543–4554 (2008)CrossRefGoogle Scholar
  49. 49.
    Nakao, H.: Multi-scaling properties of truncated Lévy flights. Phys. Lett. A 266, 282–289 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.School of MathematicsShandong UniversityJinanPeople’s Republic of China

Personalised recommendations