Skip to main content

Advertisement

Log in

Model electrical activity of neuron under electric field

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Continuous pump and transmission of charges such as calcium, potassium, sodium in the cell can induce time-varying electromagnetic field, and the induced electric field can further modulate the propagation of ions in the cell. Based on the physical laws of static electric field, the effect of electric field in isolate neuron is investigated by introducing additive variable E on the model. Each neuron is considered as a charged body with complex distribution of charges, and electric field is triggered to receive and give response to external electric field and electric stimulus. That is, the electric field is considered as a new variable to describe the polarization modulation of media resulting from external electric field and intrinsic change of density distribution in charges or ions. The dynamical behaviors in electrical activities are analyzed and discussed in the new neuron model, and it confirms that electric field can cause distinct mode transition in electrical activities of neuron exposed to different kinds of electric field. It could provide new insights to understand signal encoding and propagation in nervous system. Finally, it also suggests that new model can be used for signal propagation between neurons when synapse coupling is suppressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Tang, J., Zhang, J., Ma, J., et al.: Astrocyte calcium wave induces seizure-like behavior in neuron network. Sci. China Technol. Sci. 60, 1011–1018 (2017)

    Article  Google Scholar 

  2. Guo, S.L., Tang, J., Ma, J., et al.: Autaptic modulation of electrical activity in a network of neuron-coupled astrocyte. Complexity 2017, 4631602 (2017)

    MathSciNet  Google Scholar 

  3. Yue, Y., Liu, L., Yang, Y., et al.: Dynamical response, information transition and energy dependence in a neuron model driven by autapse. Nonlinear Dyn. 90, 2893–2902 (2017)

    Article  Google Scholar 

  4. Wang, L., Wang, H., Yu, L., et al.: Role of axonal sodium-channel band in neuronal excitability. Phys. Rev. E 84, 052901 (2011)

    Article  Google Scholar 

  5. Li, Y., Gu, H.: The distinct stochastic and deterministic dynamics between period-adding and period-doubling bifurcations of neural bursting patterns. Nonlinear Dyn. 87, 2541–2562 (2017)

    Article  Google Scholar 

  6. Gu, H., Pan, B.: A four-dimensional neuronal model to describe the complex nonlinear dynamics observed in the firing patterns of a sciatic nerve chronic constriction injury model. Nonlinear Dyn. 81, 2107–2126 (2015)

    Article  MathSciNet  Google Scholar 

  7. Zonta, M., Angulo, M.C., Gobbo, S., et al.: Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat. Neurosci. 6(1), 43 (2003)

    Article  Google Scholar 

  8. Haydon, P.G., Carmignoto, G.: Astrocyte control of synaptic transmission and neurovascular coupling. Physiol. Rev. 86(3), 1009–1031 (2006)

    Article  Google Scholar 

  9. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500–544 (1952)

    Article  Google Scholar 

  10. Noble, D.: Cardiac action and pacemaker potentials based on the Hodgkin-Huxley equations. Nature 188(4749), 495 (1960)

    Article  Google Scholar 

  11. Rall, W.: Electrophysiology of a dendritic neuron model. Biophys. J. 2(2 Pt 2), 145 (1962)

    Article  Google Scholar 

  12. Nagumo, J., Sato, S.: On a response characteristic of a mathematical neuron model. Kybernetik 10, 155–164 (1972)

    Article  MATH  Google Scholar 

  13. Achard, P., De Schutter, E.: Complex parameter landscape for a complex neuron model. PLoS Comput. Biol. 2, e94 (2006)

    Article  Google Scholar 

  14. Tsumoto, K., Kitajima, H., Yoshinaga, T., et al.: Bifurcations in Morris–Lecar neuron model. Neurocomput 69(4–6), 293–316 (2006)

    Article  Google Scholar 

  15. Kasabov, N.: To spike or not to spike: a probabilistic spiking neuron model. Neural Netw. 23, 16–19 (2010)

    Article  Google Scholar 

  16. Shilnikov, A., Calabrese, R.L., Cymbalyuk, G.: Mechanism of bistability: tonic spiking and bursting in a neuron model. Phys. Rev. E 71, 056214 (2005)

    Article  MathSciNet  Google Scholar 

  17. Gerstner, W., Naud, R.: How good are neuron models? Science 326(5951), 379–380 (2009)

    Article  Google Scholar 

  18. González-Miranda, J.M.: Complex bifurcation structures in the Hindmarsh–Rose neuron model. Int. J. Bifurcat. Chaos 17(9), 3071–3083 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gosak, M., Markovič, R., Dolenšek, J., et al.: Network science of biological systems at different scales: a review. Phys. Life Rev. 24, 118–135 (2018)

    Article  Google Scholar 

  20. Majhi, S., Perc, M., Ghosh, D.: Chimera states in a multilayer network of coupled and uncoupled neurons. Chaos 27, 073109 (2017)

    Article  MathSciNet  Google Scholar 

  21. Bera, B.K., Majhi, S., Ghosh, D., et al.: Chimera states: effects of different coupling topologies. EPL 118, 10001 (2017)

    Article  Google Scholar 

  22. Rostami, Z., Jafari, S.: Defects formation and spiral waves in a network of neurons in presence of electromagnetic induction. Cogn Neurodyn 12(2), 235–254 (2018)

    Article  Google Scholar 

  23. Ma, J., Song, X.L., Tang, J., et al.: Wave emitting and propagation induced by autapse in a forward feedback neuronal network. Neurocomput 167, 378–389 (2015)

    Article  Google Scholar 

  24. Sun, X., Perc, M., Kurths, J.: Effects of partial time delays on phase synchronization in Watts–Strogatz small-world neuronal networks. Chaos 27, 053113 (2017)

    Article  MathSciNet  Google Scholar 

  25. Sun, X., Li, G.: Synchronization transitions induced by partial time delay in a excitatory-inhibitory coupled neuronal network. Nonlinear Dyn. 89, 2509–2520 (2017)

    Article  MathSciNet  Google Scholar 

  26. Kim, S.Y., Lim, W.: Effect of spike-timing-dependent plasticity on stochastic burst synchronization in a scale-free neuronal network. Cogn. Neurodyn. 12(3), 315–342 (2018)

    Article  Google Scholar 

  27. Kim, S.Y., Lim, W.: Dynamical responses to external stimuli for both cases of excitatory and inhibitory synchronization in a complex neuronal network. Cogn. Neurodyn. 11(5), 395–413 (2017)

    Article  Google Scholar 

  28. Ma, J., Qin, H.X., Song, X.L., et al.: Pattern selection in neuronal network driven by electric autapses with diversity in time delays. Int. J. Mod. Phys. B 29, 1450239 (2015)

    Article  Google Scholar 

  29. Jin, W., Lin, Q., Wang, A., et al.: Computer simulation of noise effects of the neighborhood of stimulus threshold for a mathematical model of homeostatic regulation of sleep-wake cycles. Complexity 2017, 4797545 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wang, C., Lv, M., Alsaedi, A., et al.: Synchronization stability and pattern selection in a memristive neuronal network. Chaos 27, 113108 (2017)

    Article  MathSciNet  Google Scholar 

  31. Zhang, G., Wu, F.Q., Hayat, T., et al.: Selection of spatial pattern on resonant network of coupled memristor and Josephson junction. Commun. Nonlinear Sci. Numer. Simulat. 65, 79–90 (2018)

    Article  MathSciNet  Google Scholar 

  32. Linares-Barranco, B., Sánchez-Sinencio, E., Rodríguez-Vázquez, A., et al.: A CMOS implementation of FitzHugh–Nagumo neuron model. IEEE J. Solid-St Circ 26(7), 956–965 (1991)

    Article  Google Scholar 

  33. Ren, G., Zhou, P., Ma, J., et al.: Dynamical response of electrical activities in digital neuron circuit driven by autapse. Int. J. Bifurcat. Chaos 27, 1750187 (2017)

    Article  MathSciNet  Google Scholar 

  34. Wu, X.Y., Ma, J., Yuan, L.H., et al.: Simulating electric activities of neurons by using PSPICE. Nonlinear Dyn. 75, 113–126 (2014)

    Article  MathSciNet  Google Scholar 

  35. Wei, H., Bu, Y., Dai, D.: A decision-making model based on a spiking neural circuit and synaptic plasticity. Cogn. Neurodyn. 11(5), 415–431 (2017)

    Article  Google Scholar 

  36. Hu, X.Y., Liu, C.X., Liu, L., et al.: An electronic implementation for Morris–Lecar neuron model. Nonlinear Dyn. 84, 2317–2332 (2017)

    Article  MathSciNet  Google Scholar 

  37. Hu, X.Y., Liu, C.X., Liu, L., et al.: Chaotic dynamics in a neural network under electromagnetic radiation. Nonlinear Dyn. 91, 1541–1554 (2018)

    Article  Google Scholar 

  38. Ren, G., Xue, Y., Li, Y., et al.: Field coupling benefits signal exchange between Colpitts systems. Appl. Math. Comput. 342, 45–54 (2019)

    MathSciNet  Google Scholar 

  39. Ma, J., Tang, J.: A review for dynamics of collective behaviors of network of neurons. Sci. China Technol. Sci. 58, 2038–2045 (2015)

    Article  Google Scholar 

  40. Lv, M., Wang, C.N., Ren, G.D., et al.: Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dyn. 85, 1479–1490 (2016)

    Article  Google Scholar 

  41. Lv, M., Ma, J.: Multiple modes of electrical activities in a new neuron model under electromagnetic radiation. Neurocomput 205, 375–381 (2016)

    Article  Google Scholar 

  42. Wu, F., Wang, C., Jin, W., et al.: Dynamical responses in a new neuron model subjected to electromagnetic induction and phase noise. Phys. A 469, 81–88 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  43. Xu, Y., Ying, H.P., Jia, Y., et al.: Autaptic regulation of electrical activities in neuron under electromagnetic induction. Sci. Rep. 7, 43452 (2017)

    Article  Google Scholar 

  44. Ma, J., Wu, F., Wang, C.: Synchronization behaviors of coupled neurons under electromagnetic radiation. Int. J. Mod Phys. B 31, 1650251 (2017)

    Article  MathSciNet  Google Scholar 

  45. Ge, M.Y., Jia, Y., Xu, Y., et al.: Mode transition in electrical activities of neuron driven by high and low frequency stimulus in the presence of electromagnetic induction and radiation. Nonlinear Dyn. 91, 515–523 (2018)

    Article  Google Scholar 

  46. Wu, F.Q., Wang, C.N., Xu, Y., et al.: Model of electrical activity in cardiac tissue under electromagnetic induction. Sci. Rep. 6, 28 (2016)

    Article  Google Scholar 

  47. Ma, J., Wu, F.Q., Hayat, T., et al.: Electromagnetic induction and radiation-induced abnormality of wave propagation in excitable media. Phys. A 486, 508–516 (2017)

    Article  MathSciNet  Google Scholar 

  48. Wang, Y., Wang, C., Ren, G., et al.: Energy dependence on modes of electric activities of neuron driven by multi-channel signals. Nonlinear Dyn. 89, 1967–1987 (2017)

    Article  Google Scholar 

  49. Zhang, G., Wang, C., Alzahrani, F., et al.: Investigation of dynamical behaviors of neurons driven by memristive synapse. Chaos Solitons Fractals 108, 15–24 (2018)

    Article  MathSciNet  Google Scholar 

  50. Lu, L.L., Jia, Y., Liu, W.H., et al.: Mixed stimulus-induced mode selection in neural activity driven by high and low frequency current under electromagnetic radiation. Complexity 2017, 7628537 (2017)

    MathSciNet  MATH  Google Scholar 

  51. Fox, R.F., Gatland, I.R., Roy, R., et al.: Fast, accurate algorithm for numerical simulation of exponentially correlated colored noise. Phys. Rev. A 38(11), 5938–5940 (1988)

    Article  Google Scholar 

  52. FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445 (1961)

    Article  Google Scholar 

  53. Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. Proc IRE 50, 2061–2070 (1962)

    Article  Google Scholar 

  54. Masoliver, M., Masoller, C.: Sub-threshold signal encoding in coupled FitzHugh–Nagumo neurons. Sci. Rep. 8, 8276 (2018)

    Article  Google Scholar 

  55. Yao, Y., Ma, J.: Weak periodic signal detection by sine-Wiener-noise-induced resonance in the FitzHugh–Nagumo neuron. Cogn Neurodyn. 12, 343–349 (2018)

    Article  Google Scholar 

  56. Guillamon, A., Prohens, R., Teruel, A.E., et al.: Estimation of synaptic conductance in the spiking regime for the McKean neuron Model. SIAM J. Appl. Dyn. Sys. 16, 1394–1424 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  57. Masoliver, M., Malik, N., Schöll, E., et al.: Coherence resonance in a network of FitzHugh–Nagumo systems: interplay of noise, time-delay, and topology. Chaos 27, 101102 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  58. Zhu, J., Kong, C., Liu, X.: Subthreshold and suprathreshold vibrational resonance in the FitzHugh–Nagumo neuron model. Phys. Rev. E 94, 032208 (2016)

    Article  MathSciNet  Google Scholar 

  59. Fu, Y.X., Kang, Y.M., Xie, Y.: Subcritical Hopf bifurcation and stochastic resonance of electrical activities in neuron under electromagnetic induction. Front Comput. Neurosci. 12, 6 (2018)

    Article  Google Scholar 

  60. Ullner, E., Zaikin, A., Garcia-Ojalvo, J., et al.: Vibrational resonance and vibrational propagation in excitable systems. Phys. Lett. A 312, 348–354 (2003)

    Article  MathSciNet  Google Scholar 

  61. Wang, C., He, Y., Ma, J., et al.: Parameters estimation, mixed synchronization, and antisynchronization in chaotic systems. Complexity 20, 64–73 (2014)

    Article  MathSciNet  Google Scholar 

  62. Storace, M., Linaro, D., de Lange, E.: The Hindmarsh-Rose neuron model: bifurcation analysis and piecewise-linear approximations. Chaos 18, 033128 (2008)

    Article  MathSciNet  Google Scholar 

  63. Hindmarsh, J.L., Rose, R.M.: A model of the nerve impulse using two first-order differential equations. Nature (London) 296, 162–164 (1982)

    Article  Google Scholar 

  64. Morris, C., Lecar, H.: Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 35, 193–213 (1981)

    Article  Google Scholar 

  65. Lv, M., Ma, J., Yao, Y. et al.: Synchronization and wave propagation in neuronal network under field coupling, Sci China Technol Sci 61: https://doi.org/10.1007/s11431-018-9268-2(2018)

  66. Xu, Y., Jia, Y., Ma, J., et al.: Collective responses in electrical activities of neurons under field coupling. Sci. Rep. 8, 1349 (2018)

    Article  Google Scholar 

  67. Ma, J., Wu, F., Alsaedi, A., et al.: Crack synchronization of chaotic circuits under field coupling. Nonlinear Dyn. 93, 2057–2069 (2018)

    Article  Google Scholar 

  68. Schmid, G., Goychuk, I., Hänggi, P.: Effect of channel block on the spiking activity of excitable membranes in a stochastic Hodgkin–Huxley model. Phys. Biol. 1, 61–66 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

This project is supported by National Natural Science Foundation of China under Grants No.11672122, 11765011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Ma.

Ethics declarations

Conflicts of interest

The authors declare that they have no financial or non-financial competing interests and all of the authors agree to the publication of this paper.

Human and animal participants

This research do not involve any Human Participants and/or Animals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Zhang, G., Hayat, T. et al. Model electrical activity of neuron under electric field. Nonlinear Dyn 95, 1585–1598 (2019). https://doi.org/10.1007/s11071-018-4646-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4646-7

Keywords

Navigation