Nonlinear Dynamics

, Volume 95, Issue 2, pp 1529–1548 | Cite as

Optimal harvesting strategy of a stochastic inshore–offshore hairtail fishery model driven by Lévy jumps in a polluted environment

  • Yu Zhao
  • Liang You
  • Daniel Burkow
  • Sanling YuanEmail author
Original Paper


With the increasing demand for aquatic products all over the world, exploring the interactions between inshore and offshore fisheries is one of the meaningful issues to help boost yield and meet immediate protein needs. However, pollution and environmental fluctuations (fishery trading market, ocean meteorological factors) may seriously affect the optimal harvesting strategy of the interaction between inshore and offshore components of the fishery. In response to this problem, we present a stochastic inshore–offshore fishery model in a polluted environment, which incorporates harvesting efforts subjected to Lévy jumps and environmental toxicant influence. By virtue of the ergodic methods, the optimal harvesting effort and maximum expectation of sustainable yields are established. Using the hairtail fisheries in the East China Sea as a case study, numerical simulations are carried out to support the theoretical results. These results show that the diffusion between inshore and offshore fisheries, Lévy jumps noise and environmental toxicant input may significantly affect the optimal harvesting strategy, which can provide suggestions for effective measures to increase the aquatic products and guide harmonious development of inshore and offshore aquaculture.


Inshore–offshore fishery Environmental fluctuation Pollution Ergodic method Optimal harvesting policy 



Research is supported by the National Natural Science Foundation of China (11601250, 11671260) and the Scientific Research Project of Ningxia Medical University (XT2017002).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Ferreira, J.G., Saurel, C., Lencart e Silva, J.D., Nunes, J.P., Vazquez, F.: Modelling of interactions between inshore and offshore aquaculture. Aquaculture 426–427(1), 154–164 (2014)CrossRefGoogle Scholar
  2. 2.
    Food and Agriculture Organization: The state of world fisheries and aquaculture: contributing to food security and nutrition for all. Rome, Italy, vol. 2016, p. 200 (2016)Google Scholar
  3. 3.
    Ye, Y.M., Beddington, J.: Modelling interactions between inshore and offshore fisheries: the case of the East China Sea hairtail (Trichiurus haumela) fishery. Fish. Res. 27, 153–177 (1996)CrossRefGoogle Scholar
  4. 4.
    Diana, J.S., Egna, H.S., Chopin, T., Peterson, M.S., Cao, L., Pomeroy, R., Verdegem, M., Slack, W.T., Bondad-Reantso, M.G., Cabello, F.: Responsible aquaculture in 2050: valuing local conditions and human innovations will be key to success. Bioscience 63(4), 255–262 (2013)CrossRefGoogle Scholar
  5. 5.
    Alberto, A.P., David, Z.: Modeling, Dynamics, Optimization and Bioeconomics II. Springer, Berkeley (2017)Google Scholar
  6. 6.
    Clark, C.W.: Mathematical Bioeconomics: The Optimal Management of Renewable Resources. Wiley, New York (1976)zbMATHGoogle Scholar
  7. 7.
    Pradhan, T., Chandhari, K.S.: Bioeconomised modelling of selective harvesting in an inshore–offshore fishery. Differ. Equ. Dyn. Syst. 7, 305–320 (1999)zbMATHGoogle Scholar
  8. 8.
    Dubey, B., Sinha, P., Chandra, P.: A model for an inshore–offshore fishery. J. Biol. Syst. 11(1), 27–41 (2003)CrossRefzbMATHGoogle Scholar
  9. 9.
    Kang, B.L., Liu, B., Xu, L.: Dynamics of an inshore–offshore fishery model with impulsive pollutant input in inshore area. Nonlinear Dyn. 67, 2353–2362 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Zhao, Z., Zhang, X.Q., Chen, L.S.: The effect of pulsed harvesting policy on the inshore–offshore fishery model with the impulsive diffusion. Nonlinear Dyn. 63, 537–545 (2011)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Dong, L.Z., Chen, L.S., Sun, L.H.: Optimal harvesting policy for inshore–offshore fishery model with impulsive diffusive. Acta Math. Sci. 27B(2), 405–412 (2007)CrossRefzbMATHGoogle Scholar
  12. 12.
    Charles, A.T., Reed, W.J.: A bioeconomic analysis of sequential fisheries: competition, coexistence and optimal harvest allocation between inshore and offshore fleets. Can. J. Fish. Aquat. Sci. 42, 952–962 (1985)CrossRefGoogle Scholar
  13. 13.
    Yu, X.Y., Yuan, S.L., Zhang, T.H.: About the optimal harvesting of a fuzzy predator-prey system: a bioeconomic model incorporating prey refuge and predator mutual interference. Nonlinear Dyn. (2018).
  14. 14.
    Anderson, L.G., Carlos Seijo, J.: Bioeconomics of Fisheries Management. Wiley, Hoboken (2010)Google Scholar
  15. 15.
    Fick, A.: On liquid diffusion. J. Membr. Sci. 100, 33–38 (1995)CrossRefGoogle Scholar
  16. 16.
    Chaudhuri, K.: On selective harvesting of an inshore–offshore fishery: a bioeconomic model. Proc. Appl. Math. Mech. 7, 2120027–2120028 (2017). CrossRefGoogle Scholar
  17. 17.
    Freedman, H.I., Rai, B., Walman, P.: Mathematical models of population interactions with dispersal II: differential survival in a change of habitat. J. Math. Anal. Appl. 115, 140–154 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Liu, M., Deng, M.L., Du, B.: Analysis of a stochastic logistic model with diffusion. Appl. Math. Comput. 266, 169–182 (2015)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Yan, Y.R., Chen, J.L., Lu, H.L., Hou, G., Lai, J.Y.: Feeding habits and ontogenetic diet shifts of hairtail, Trichiurus margarites, in the Beibu Gulf of the South China Sea. Acta Ecol. Sin. 32, 18–25 (2012)CrossRefGoogle Scholar
  20. 20.
    Smart, A.C., Andrew, J.T., William, T.W., Brian, K., Colin, A.S.: Stochastic demographic analyses of the silvertip shark (Carcharhinus albimarginatus) and the common blacktip shark (Carcharhinus limbatus) from the Indo-Pacific. Fish. Res. 191, 95–107 (2017)CrossRefGoogle Scholar
  21. 21.
    Costa, A., Schaider, L., Hughes, P.: Pollution in the coastal zone: a case study of wastewater on cape cod, MA. Green Chemistry. 317–337 (2018)
  22. 22.
    Li, F., Lin, Z.F., Wen, J.S., et al.: Risk assessment of trace metal-polluted coastal sediments on Hainan Island: a full-scale set of 474 geographical locations covering the entire island. Mar. Pollut. Bull. 125, 541–555 (2017)CrossRefGoogle Scholar
  23. 23.
    Yu, X.Y., Yuan, S.L., Zhang, T.H.: The effects of toxin-producing phytoplankton and environmental fluctuations on the planktonic blooms. Nonlinear Dyn. 91, 1653–1668 (2018)CrossRefzbMATHGoogle Scholar
  24. 24.
    Silva, C., Ferreira, J.G., Bricker, S.B., DelValls, T.A., Martín-Dínz, M.L., Yaez, E.: Site selection for shellfish aquaculture by means of GIS and farm-scale models, with an emphasis on data-poor environments. Aquaculture 318, 444–457 (2011)CrossRefGoogle Scholar
  25. 25.
    Liu, M., Wang, K., Wu, Q.: Survival analysis of stochastic competitive models in a polluted environment and stochastic competitive exclusion principle. Bull. Math. Biol. 73, 1969–2012 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Kim, J.Y., Kang, Y.S., Oh, H.J., Suh, Y.S., Hwang, J.D.: Spatial distribution of early life stages of anchovy (Engraulis japonicus) and hairtail (Trichiurus lepturus) and their relationship with oceanographic features of the East China Sea during the 1997–1998 El Niño event. Estuar. Coast. Shelf Sci. 63, 13–21 (2005)CrossRefGoogle Scholar
  27. 27.
    Cahyarini, S.Y., Zinke, J., Troelstra, S., Suharsono, Aldrian E., Hoeksema, B.W.: Coral Sr/Ca-based sea surface temperature and air temperature variability from the inshore and offshore corals in the Seribu Islands, Indonesia. Mar. Poll. Bull. 110, 694–700 (2016)CrossRefGoogle Scholar
  28. 28.
    Robert, T.P., Mia, J.T., Edward, A.J.: Compounded perturbations yield ecological surprises. Ecosystems 1, 535–545 (1998)CrossRefGoogle Scholar
  29. 29.
    Applebaum, D.: Lévy Processes and Stochastic Calculus, 2nd edn. Cambridge Unversity Press, Cambridge (2009)CrossRefzbMATHGoogle Scholar
  30. 30.
    Sokolov, I.M., Ebeling, W., Dybiec, B.: Harmonic oscillator under Levy noise: unexpected properties in the phase space. Phys. Rev. E 83(4), 041118 (2017)CrossRefGoogle Scholar
  31. 31.
    Kunita, H.: Itô stochastic calculus: its surprising power for applications. Stoch. Process Appl. 120(5), 622–652 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Bao, J.H., Mao, X.R., Yin, G., Yuan, C.G.: Competitive Lotka–Volterra population dynamics with jumps. Nonlinear Anal. 74, 6601–6616 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Bao, J.H., Yuan, C.G.: Stochastic population dynamics driven by Lévy noise. J. Math. Anal. Appl. 391, 363–375 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Liu, M., Wang, K.: Stochastic Lotka–Volterra systems with Lévy noise. J. Math. Anal. Appl. 410, 750–763 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Liu, M., Bai, C.Z.: Optimal harvesting of a stochastic mutulalism model with Lévy jumps. Appl. Math. Comput. 276, 301–309 (2016)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Liu, Q., Jiang, D.Q., Shi, N.Z., Hayat, T., Alsaedi, A.: Stochastic mutualism model with Lévy jumps. Commun. Nonlinear Sci. Numer. Simulat. 43, 78–90 (2017)CrossRefGoogle Scholar
  37. 37.
    Zhao, Y., Yuan, S.L.: Optimal harvesting policy of a stochastic two-species competitive model with Lévy noise in a polluted environment. Physica A 477, 20–33 (2017)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Zhang, Q.M., Jiang, D.Q., Zhao, Y.N., ORegan, D.: Asymptotic behavior of a stochastic population model with Allee effect by Lévy jumps. Nonlinear Anal. Hybrid Syst. 24, 1–12 (2017)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Qiu, H., Deng, W.M.: Optimal harvesting of a stochastic delay tri-trophic food-chain model with Lévy jumps. Physica A 492, 1715–1728 (2018)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Lipster, R.: A strong law of large numbers for local martingales. Stochastics 3, 217–228 (1980)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Zhao, Y., Yuan, S.L., Ma, J.L.: Survival and stationary distribution analysis of a stochastic competitive model of three species in a polluted environment. Bull. Math. Biol. 77(7), 1285–1326 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Liu, M., Bai, C.Z.: Optimal harvesting of a stochastic logistic model with time delay. J. Nonlinear Sci. 25, 277–289 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Mao, X.R.: Stochastic Differential Equations and Applications. Horwood Publishing, Chichester (2006)Google Scholar
  44. 44.
    Prato, D., Zabczyk, J.: Ergodicity for Infinite Dimensional Systems. Cambridge University Press, Cambridge (1996)CrossRefzbMATHGoogle Scholar
  45. 45.
    Protter, P., Talay, D.: The Euler scheme for Lévy dirven stochastic differential equations. Ann. Probab. 25, 393–423 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Zhou, X.L., Wang, K.: Numerical simulations and modeling for stochastic biological systems with jumps. Commun. Nonlinear Sci. Numer. Simul. 19, 1557–1568 (2014)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Wang, Y.Z., Qiu, Y.S.: An analysis of interannual variations of hairtail catches in East China Sea. South China Fish. Sci. 2(3), 16–24 (2006)MathSciNetGoogle Scholar
  48. 48.
    Mi, C.D.: A study on resources, stock structure and variation of reproductive habit of Hairtail, Rrichiurus haumela in east China sea. J. Fish. Sci. China 4(1), 7–14 (1997). (In Chinese)Google Scholar
  49. 49.
    Lande, R., Engen, S., Sæther, B.E.: Optimal harvesting, economic discounting and extinction risk in fluctuating population. Nature 372, 88–90 (1994)CrossRefGoogle Scholar
  50. 50.
    Pal, D., Mahaptra, G.S., Samanta, G.P.: Optimal harvesting of prey-predator system with interval biological parameters: a bioeconomic model. Math. Biosci. 241, 181–187 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    You, L., Zhao, Y.: Optimal harvesting of a Gompertz population model with a marine protected area and interval-value biological parameters. Math. Methods Appl. Sci. 41, 1527–1540 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Yu, X.W., Yuan, S.L., Zhang, T.H.: Persistence and ergodicity of a stochastic single species model with Allee effect under regime switching. Commun. Nonlinear Sci. Numer. Simul. 59, 359–374 (2018)MathSciNetCrossRefGoogle Scholar
  53. 53.
    Engen, S., Lee, A.M., Sæther, B.: Spatial distribution and optimal harvesting of an age-structured population in a fluctuating environment. Math. Biosci. 296, 36–44 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Zhang, T.H., Liu, X., Meng, X.Z., Zhang, T.Q.: Spatio-temporal dynamics near the steady state of a planktonic system. Comput. Math. Appl. 75(12), 4490–4504 (2018)MathSciNetCrossRefGoogle Scholar
  55. 55.
    Barbalat, I.: Systems dquations diffrentielles doscillations non linaires. Rev. Math. Pures Appl. 4(2), 267–270 (1959)MathSciNetGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.School of Mathematica and Computer ScienceNingxia Normal UniversityGuyuanChina
  2. 2.School of Public Health and ManagementNingxia Medical UniversityYinchuanChina
  3. 3.School of International TradeShanxi University of Finance and EconomicsTaiyuanChina
  4. 4.Simon A. Levin Mathematical, Computational and Modeling Sciences CenterArizona State UniversityTempeUSA
  5. 5.College of ScienceUniversity of Shanghai for Science and TechnologyShanghaiChina

Personalised recommendations