Skip to main content
Log in

Adaptive neural control of unknown non-affine nonlinear systems with input deadzone and unknown disturbance

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, an adaptive neural scheme is developed for unknown non-affine nonlinear systems with input deadzone and internal/external unknown disturbance. With the help of mean value theorem and implicit function theorem, the control problem that the system input cannot be expressed in a linear form can be solved. The unknown input deadzone is approximated by neural networks. The immeasurable states are estimated by a high-gain observer such that output feedback control is obtained. The approximation error of both neural networks and the unknown internal/external disturbance is considered as an overall disturbance which is compensated by a novel disturbance observer. Via Lyapunov’s stability theory, it can be proved that all the state signals are uniformly bounded ultimately. The transient response performance can be improved by tuning the control parameters, and the steady-state error converges to any small neighborhood of zero. Simulation examples are carried out to verify the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Li, Z., Su, C.Y., Wang, L., Chen, Z., Chai, T.: Nonlinear disturbance observer-based control design for a robotic exoskeleton incorporating fuzzy approximation. IEEE Trans. Ind. Electron. 62(9), 5763–5775 (2015)

    Article  Google Scholar 

  2. Li, Z., Su, C.Y., Li, G., Su, H.: Fuzzy approximation-based adaptive backstepping control of an exoskeleton for human upper limbs. IEEE Trans. Fuzzy Syst. 23(3), 555–566 (2014)

    Article  Google Scholar 

  3. Li, Z., Huang, Z., He, W., Su, C.Y.: Adaptive impedance control for an upper limb robotic exoskeleton using biological signals. IEEE Trans. Ind. Electron. 64, 1664–1674 (2017)

    Article  Google Scholar 

  4. Hamdy, M., Ramadan, A., Abozalam, B.: A novel inverted fuzzy decoupling scheme for mimo systems with disturbance: a case study of binary distillation column. J. Intell. Manuf. 29(8), 1859–1871 (2018)

    Article  Google Scholar 

  5. Xu, B., Sun, F.: Composite intelligent learning control of strict-feedback systems with disturbance. IEEE Trans. Cybern. 48, 730–741 (2018)

    Article  Google Scholar 

  6. Ning, X., Yang, Y., Li, Z., Gui, M., Fang, J.: Ephemeris corrections in celestial/pulsar navigation using time differential and ephemeris estimation. J. Guid. Control Dyn. 2, 1–8 (2017)

    Google Scholar 

  7. Peng, K., Zhang, K., You, B., Dong, J., Wang, Z.: A quality-based nonlinear fault diagnosis framework focusing on industrial multimode batch processes. IEEE Trans. Ind. Electron. 63, 2615–2624 (2016)

    Google Scholar 

  8. Wang, H., Wang, C., Chen, W., Liang, X., Liu, Y.: Three-dimensional dynamics for cable-driven soft manipulator. IEEE/ASME Trans. Mechatron. 22(1), 18–28 (2017)

    Article  Google Scholar 

  9. Peng, K., Zhang, K., Dong, J., You, B.: Quality-relevant fault detection and diagnosis for hot strip mill process with multi-specification and multi-batch measurements. J. Frankl. Inst. 352(3), 987–1006 (2015)

    Article  MATH  Google Scholar 

  10. Wang, H., Zhang, R., Chen, W., Liang, X., Pfeifer, R.: Shape detection algorithm for soft manipulator based on fiber bragg gratings. IEEE/ASME Trans. Mechatron. 21(6), 2977–2982 (2016)

    Article  Google Scholar 

  11. Cui, R., Chen, L., Yang, C., Chen, M.: Extended state observer-based integral sliding mode control for an underwater robot with unknown disturbances and uncertain nonlinearities. IEEE Trans. Ind. Electron. 64, 6785–6795 (2017)

    Article  Google Scholar 

  12. Yang, C., Jiang, Y., Li, Z., He, W., Su, C.Y.: Neural control of bimanual robots with guaranteed global stability and motion precision. IEEE Trans. Ind. Electron. 13, 1162–1171 (2017)

    Google Scholar 

  13. Yang, C., Wang, X., Long, C., Ma, H.: Neural-learning-based telerobot control with guaranteed performance. IEEE Trans. Cybern. 47(10), 3148–3159 (2017)

    Article  Google Scholar 

  14. He, W., Ge, W., Li, Y., Liu, Y.J., Yang, C., Sun, C.: Model identification and control design for a humanoid robot. IEEE Trans. Syst. Man Cybern. Syst. 47(1), 45–57 (2017)

    Article  Google Scholar 

  15. Park, J.H., Huh, S.H., Kim, S.H., Seo, S.J., Park, G.T.: Direct adaptive controller for nonaffine nonlinear systems using self-structuring neural networks. IEEE Trans. Neural Netw. 16(2), 414–22 (2005)

    Article  Google Scholar 

  16. Boulkroune, A., M’Saad, M., Farza, M.: Adaptive fuzzy tracking control for a class of mimo nonaffine uncertain systems. Neurocomputing 93(2), 48–55 (2012)

    Article  Google Scholar 

  17. Park, J.H., Park, G.T., Kim, S.H., Moon, C.J.: Direct adaptive self-structuring fuzzy controller for nonaffine nonlinear system. Fuzzy Sets Syst. 153(3), 429–445 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhang, X., Zhang, H., Sun, Q., Luo, Y.: Adaptive dynamic programming-based optimal control of unknown nonaffine nonlinear discrete-time systems with proof of convergence. Neurocomputing 91(2), 48–55 (2012)

    Article  Google Scholar 

  19. He, W., Li, Z., Chen, C.L.P.: A survey of human-centered intelligent robots: issues and challenges. IEEE/CAA J. Autom. Sin. 4(4), 602–609 (2017)

    Article  Google Scholar 

  20. Wang, D., Liu, D., Li, H., Luo, B., Ma, H.: An approximate optimal control approach for robust stabilization of a class of discrete-time nonlinear systems with uncertainties. IEEE Trans. Syst. Man Cybern. Syst. 46(5), 713–717 (2016)

    Article  Google Scholar 

  21. Wang, D., He, H., Liu, D.: Adaptive critic nonlinear robust control: a survey. IEEE Trans. Cybern. 47(10), 3429–3451 (2017)

    Article  Google Scholar 

  22. Luo, B., Wu, H.N., Li, H.X.: Adaptive optimal control of highly dissipative nonlinear spatially distributed processes with neuro-dynamic programming. IEEE Trans. Neural Netw. Learn. Syst. 26(4), 684 (2015)

    Article  MathSciNet  Google Scholar 

  23. Luo, B., Huang, T., Wu, H.N., Yang, X.: Data-driven h\(^{\infty }\) control for nonlinear distributed parameter systems. IEEE Trans. Neural Netw. Learn. Syst. 26(11), 2949–2961 (2015)

    Article  MathSciNet  Google Scholar 

  24. Niu, B., Liu, Y., Zong, G., Han, Z., Fu, J.: Command filter-based adaptive neural tracking controller design for uncertain switched nonlinear output-constrained systems. IEEE Trans. Cybern. 47, 3160–3171 (2017)

    Article  Google Scholar 

  25. Wang, N., Qian, C., Sun, J.C., Liu, Y.C.: Adaptive robust finite-time trajectory tracking control of fully actuated marine surface vehicles. IEEE Trans. Control Syst. Technol. 24, 1454–1462 (2016)

    Article  Google Scholar 

  26. He, W., Ge, S.S., Li, Y., Chew, E., Ng, Y.S.: Neural network control of a rehabilitation robot by state and output feedback. J. Intell. Robot. Syst. 80(1), 15–31 (2015)

    Article  Google Scholar 

  27. Liu, Y.J., Li, J., Tong, S., Chen, C.L.P.: Neural network control-based adaptive learning design for nonlinear systems with full-state constraints. IEEE Trans. Neural Netw. Learn. Syst. 27, 1562–1571 (2016)

    Article  MathSciNet  Google Scholar 

  28. Peng, Z., Wang, D., Zhang, H., Sun, G.: Distributed neural network control for adaptive synchronization of uncertain dynamical multiagent systems. IEEE Trans. Neural Netw. Learn. Syst. 25, 1508–1519 (2014)

    Article  Google Scholar 

  29. Pan, Y., Yu, H.: Biomimetic hybrid feedback feedforward neural-network learning control. IEEE Trans. Neural Netw. Learn. Syst. 28, 1481–1487 (2017)

    Article  Google Scholar 

  30. Zhao, S., Liang, H., Du, P., Qi, S.: Adaptive nn finite-time tracking control of output constrained nonlinear system with input saturation. Nonlinear Dyn. 92(2), 1–12 (2018)

    MATH  Google Scholar 

  31. Zhang, S., Dong, Y., Ouyang, Y., Yin, Z., Peng, K.: Adaptive neural control for robotic manipulators with output constraints and uncertainties. IEEE Trans. Neural Netw. Learn. Syst. 99, 1–11 (2018)

    MathSciNet  Google Scholar 

  32. Chen, C.L.P., Liu, Z.: Broad learning system: an effective and efficient incremental learning system without the need for deep architecture. IEEE Trans. Neural Netw. Learn. Syst. 29, 10–24 (2018)

    Article  MathSciNet  Google Scholar 

  33. Cui, R., Yang, C., Li, Y., Sharma, S.: Adaptive neural network control of auvs with control input nonlinearities using reinforcement learning. IEEE Trans. Syst. Man Cybern. Syst. 47(6), 1019–1029 (2017)

    Article  Google Scholar 

  34. Yang, H., Liu, J.: An adaptive rbf neural network control method for a class of nonlinear systems. IEEE/CAA J. Autom. Sin. 5(2), 457–462 (2018)

    Article  MathSciNet  Google Scholar 

  35. Liu, D., Xu, Y., Wei, Q., Liu, X.: Residential energy scheduling for variable weather solar energy based on adaptive dynamic programming. IEEE/CAA J. Autom. Sin. 5(1), 36–46 (2018)

    Article  Google Scholar 

  36. Xu, B., Wang, D., Zhang, Y., Shi, Z.: Dob-based neural control of flexible hypersonic flight vehicle considering wind effects. IEEE Trans. Ind. Electron. 64, 8676–8685 (2017)

    Article  Google Scholar 

  37. Xu, B., Shou, Y.: Composite learning control of mimo systems with applications. IEEE Trans. Ind. Electron. 65, 6414–6424 (2018)

    Article  Google Scholar 

  38. Sun, C., Xia, Y.: An analysis of a neural dynamical approach to solving optimization problems. IEEE Trans. Autom. Control 54(8), 1972–1977 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Cui, R., Ren, B., Ge, S.S.: Synchronised tracking control of multi-agent system with high order dynamics. IET Control Theory Appl. 6(5), 603–614 (2012)

    Article  MathSciNet  Google Scholar 

  40. Chen, M., Ge, S.S., Ren, B.: Adaptive tracking control of uncertain mimo nonlinear systems with input constraints. Automatica 47(3), 452–465 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  41. Ren, B., Ge, S.S., Tee, K.P., Lee, T.H.: Adaptive neural control for output feedback nonlinear systems using a barrier lyapunov function. IEEE Trans. Neural Netw. 21(8), 1339–1345 (2010)

    Article  Google Scholar 

  42. Dai, S.L., Wang, C., Luo, F.: Identification and learning control of ocean surface ship using neural networks. IEEE Trans. Ind. Inf. 8, 801–810 (2012)

    Article  Google Scholar 

  43. Dai, S.L., Wang, M., Wang, C.: Neural learning control of marine surface vessels with guaranteed transient tracking performance. IEEE Trans. Ind. Electron. 63(3), 1717–1727 (2016)

    Article  Google Scholar 

  44. Wang, F.Y., Zheng, N.N., Cao, D., Martinez, C.M., Li, L., Liu, T.: Parallel driving in cpss:a unified approach for transport automation and vehicle intelligence. IEEE/CAA J. Autom. Sin. 4(4), 577–587 (2017)

    Article  MathSciNet  Google Scholar 

  45. Wang, H., Zhu, Q.: Finite-time stabilization of high-order stochastic nonlinear systems in strict-feedback form. Automatica 54, 284–291 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wang, H., Zhu, Q.: Global stabilization of stochastic nonlinear systems via \(c^1\) and \(c^{\infty }\) controllers. IEEE Trans. Autom. Control 62, 5880–5887 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  47. Xiong, S., Zhu, Q.: Decentralized risk-sensitive design for large-scale stochastic interconnected systems with time-varying delays. J. Frankl. Inst. 353(7), 1527–1552 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  48. He, W., Huang, H., Chen, Y., Xie, W., Feng, F., Kang, Y., Sun, C.: Development of an autonomous flapping-wing aerial vehicle. Sci. China (Inf. Sci.) 60(6), 063201 (2017)

    Article  Google Scholar 

  49. Guo, Q., Zhang, Y., Celler, B.G., Su, S.W.: Backstepping control of electro-hydraulic system based on extended-state-observer with plant dynamics largely unknown. IEEE Trans. Ind. Electron. 63(11), 6909–6920 (2016)

    Article  Google Scholar 

  50. Zhang, Z., Xu, S., Zhang, B.: Asymptotic tracking control of uncertain nonlinear systems with unknown actuator nonlinearity. IEEE Trans. Autom. Control 59(5), 1336–1341 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  51. Hamdy, M., Abd-Elhaleem, S., Fkirin, M.A.: Time-varying delay compensation for a class of nonlinear control systems over network via \(h_{\infty }\) adaptive fuzzy controller. IEEE Trans. Syst. Man Cybern. Syst. 47, 2114–2124 (2017)

    Article  Google Scholar 

  52. Deng, H., Li, H.X., Wu, Y.H.: Feedback-linearization-based neural adaptive control for unknown nonaffine nonlinear discrete-time systems. IEEE Trans. Neural Netw. 19, 1615–1625 (2008)

    Article  Google Scholar 

  53. Wang, H., Sun, W., Liu, P.X.: Adaptive intelligent control of nonaffine nonlinear time-delay systems with dynamic uncertainties. IEEE Trans. Syst. Man Cybern. Syst. 47, 1474–1485 (2017)

    Article  Google Scholar 

  54. Meng, W., Yang, Q., Si, J., Sun, Y.: Adaptive neural control of a class of output-constrained nonaffine systems. IEEE Trans. Cybern. 46, 85–95 (2016)

    Article  Google Scholar 

  55. Meng, T., He, W.: Iterative learning control of a robotic arm experiment platform with input constraint. IEEE Trans. Ind. Electron. 65(1), 664–672 (2017)

    Article  Google Scholar 

  56. Tao, G., Kokotovic, P.V.: Adaptive control of plants with unknown hysteresis. IEEE Trans. Autom. Control 40(2), 212–220 (1995)

    MATH  Google Scholar 

  57. Wang, X.S., Su, C.Y., Hong, H.: Robust adaptive control of a class of nonlinear systems with unknown dead-zone. Automatica 40(3), 407–413 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  58. Selmic, R., Lewis, F.: Deadzone compensation in motion control systems using neural networks. IEEE Trans. Autom. Control 45(4), 602–613 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  59. Zhang, Z., Xu, S., Zhang, B.: Exact tracking control of nonlinear systems with time delays and dead-zone input. Automatica 52(52), 272–276 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  60. Chen, C.L.P., Wen, G.X., Liu, Y.J., Liu, Z.: Observer-based adaptive backstepping consensus tracking control for high-order nonlinear semi-strict-feedback multiagent systems. IEEE Trans. Cybern. 46(7), 1591–1601 (2016)

    Article  Google Scholar 

  61. Zhou, Q., Li, H., Wang, L., Lu, R.: Prescribed performance observer-based adaptive fuzzy control for nonstrict-feedback stochastic nonlinear systems. IEEE Trans. Syst. Man Cybern. Syst. 48(10), 1747–1758 (2018)

    Article  Google Scholar 

  62. Zhang, S., He, W., Huang, D.: Active vibration control for a flexible string system with input backlash. IET Control Theory Appl. 10(7), 800–805 (2016)

    Article  MathSciNet  Google Scholar 

  63. Ma, Z., Tong, S., Li, Y.: Adaptive output feedback fault-tolerant control for mimo non-affine non-linear systems based on disturbance observer. IET Control Theory Appl. 10(18), 2422–2436 (2016)

    Article  MathSciNet  Google Scholar 

  64. He, W., Huang, H., Ge, S.S.: Adaptive neural network control of a robotic manipulator with time-varying output constraints. IEEE Trans. Cybern. 47, 3136–3147 (2017)

    Article  Google Scholar 

  65. Chen, Z., Li, Z., Chen, C.L.P.: Adaptive neural control of uncertain mimo nonlinear systems with state and input constraints. IEEE Trans. Neural Netw. Learn. Syst. 28, 1318–1330 (2017)

    Article  Google Scholar 

  66. Yang, B.J., Calise, A.J.: Adaptive control of a class of nonaffine systems using neural networks. IEEE Trans. Neural Netw. 18, 1149–1159 (2007)

    Article  Google Scholar 

  67. Wang, Y., Hu, J., Wang, J., Xing, X.: Adaptive neural novel prescribed performance control for non-affine pure-feedback systems with input saturation. Nonlinear Dyn. 93(3), 1241–1259 (2018)

    Article  MATH  Google Scholar 

  68. Ge, S.S., Hang, C.C., Zhang, T.: Adaptive neural network control of nonlinear systems by state and output feedback. IEEE Trans. Syst. Man Cybern. Part B Cybern. 29(6), 818–828 (1999)

    Article  Google Scholar 

  69. Ge, S.S., Hang, C.C., Tong, H.L., Zhang, T.: Stable Adaptive Neural Network Control, vol. 13. Springer, Berlin (2001)

    Google Scholar 

  70. Li, S., Yang, J., Chen, W.H., Chen, X.: Disturbance Observer-Based Control: Methods and Applications. CRC Press Inc, Boca Raton (2014)

    Google Scholar 

  71. Liu, Y.J., Wang, W.: Adaptive fuzzy control for a class of uncertain nonaffine nonlinear systems. Inf. Sci. 177(18), 3901–3917 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  72. Ge, S.S., Zhang, J.: Neural network control of nonaffine nonlinear system with zero dynamics by state and output feedback. IEEE Trans. Neural Netw. 14(4), 900–918 (2003)

    Article  Google Scholar 

  73. Wu, X., Gao, D.: Fault tolerance control of sofc systems based on nonlinear model predictive control. Int. J. Hydrog. Energy 42(4), 2288–2308 (2017)

    Article  Google Scholar 

  74. Yang, C., Deconinck, G., Gui, W.: An optimal power-dispatching control system for the electrochemical process of zinc based on backpropagation and hopfield neural networks. IEEE Trans. Ind. Electron. 50(5), 953–961 (2003)

    Article  Google Scholar 

  75. Patre, P.M., Mackunis, W., Kaiser, K., Dixon, W.E.: Asymptotic tracking for uncertain dynamic systems via a multilayer nn feedforward and rise feedback control structure. IEEE Trans. Autom. Control 53(9), 2180–2185 (2008)

    Article  MATH  Google Scholar 

  76. Lian, K.Y., Liu, P., Chiang, T.S., Chiu, C.S.: Adaptive synchronization design for chaotic systems via a scalar driving signal. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 49(1), 17–27 (2002)

    Article  Google Scholar 

  77. Pan, Y., Yu, H.: Composite learning from adaptive dynamic surface control. IEEE Trans. Autom. Control 61(9), 2603–2609 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  78. Pan, Y., Yu, H.: Composite learning robot control with guaranteed parameter convergence. Automatica 89, 398–406 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grants 61873297 and 61873206 and 61622308 and Science and Technology on Space Intelligent Control Laboratory (ZDSYS-2017-05) and the Fundamental Research Funds for the China Central Universities of USTB under Grant FRF-BD-17-002A and China Postdoctoral Science Foundation funded Project No. 2018M630074 and Fundamental Research Funds of Shenzhen Science and Technology Project (JCYJ20160229172341417).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Kong, L., Qi, S. et al. Adaptive neural control of unknown non-affine nonlinear systems with input deadzone and unknown disturbance. Nonlinear Dyn 95, 1283–1299 (2019). https://doi.org/10.1007/s11071-018-4629-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4629-8

Keywords

Navigation