Skip to main content
Log in

Adaptive finite-time reconfiguration control of unmanned aerial vehicles with a moving leader

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates adaptive reconfiguration control problem for unmanned aerial vehicle (UAV) helicopter system with a moving leader. Only part of UAV helicopter is informed to have access to the leader’s position. The six degree-of-freedom UAV system is composed of position outer loop and attitude inner loop. In this paper, we introduce a new fully distributed, finite-time reconfiguration controller and the problem of inter-UAVs collision avoidance was solved using potential energy function approach, extending the asymptotical formation controller without collision avoidance from the literature. The distinctive feature of our algorithm from existing works is that the novel formation reconfiguration controller can achieve finite-time, collision avoidance and fully distributed formation only based on relative positions between UAV and its adjacents. It means that the control algorithm is independent of any global information that requires to be calculated by each follower UAV. The system uncertainties are estimated by radial basis function neural network in practical finite time. Simulation results are shown to demonstrate the efficiency of the designed strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Liao, F., Teo, R., Wang, J., Dong, X., Lin, F., Peng, K.: Distributed formation and reconfiguration control of vtol uavs. IEEE Trans. Control Syst. Technol. 25(1), 270–277 (2017)

    Article  Google Scholar 

  2. Li, S., Wang, X.: Finite-time consensus and collision avoidance control algorithms for multiple auvs. Automatica 49(11), 3359–3367 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ghapani, S., Mei, J., Ren, W., Song, Y.: Fully distributed flocking with a moving leader for lagrange networks with parametric uncertainties. Automatica 67, 67–76 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Kuriki, Y., Namerikawa, T.: Formation control with collision avoidance for a multi-uav system using decentralized mpc and consensus-based control. SICE J. Control Meas. Syst. Integr. 8(4), 285–294 (2015)

    Article  Google Scholar 

  5. Zhou, D., Hu, Y., Li, S.: Multiple spacecraft formation reconfiguration planning with nonconvex collision avoidance constraints. In: 2016 IEEE Chinese Guidance, Navigation and Control Conference (CGNCC), pp. 643–647 (2016)

  6. Seo, J., Kim, Y., Tsourdos, A., White, B.: Multiple uav formation reconfiguration with collision avoidance guidance via differential geometry concept. In: International Congress of the Aeronautical Sciences ICAS, pp. 1–8 (2012)

  7. Tian, B., Yin, L., Wang, H.: Finite-time reentry attitude control based on adaptive multivariable disturbance compensation. IEEE Trans. Ind. Electron. 62(9), 5889–5898 (2015)

    Article  Google Scholar 

  8. Zong, Q., Wang, J., Tao, Y.: Adaptive high-order dynamic sliding mode control for a flexible air-breathing hypersonic vehicle. Int. J. Robust Nonlinear Control 23(15), 1718–1736 (2013)

    MathSciNet  MATH  Google Scholar 

  9. Zong, G., Ren, H., Hou, L.: Finite-time stability of interconnected impulsive switched systems. Iet Control Theory Appl. 10(6), 648–654 (2016)

    Article  MathSciNet  Google Scholar 

  10. Gao, L., Luo, F., Yan, Z.: Finite-time annular domain stability of impulsive switched systems: mode-dependent parameter approach. Int. J. Control (2017). https://doi.org/10.1080/00207179.2017.1396360

  11. Tian, B., Zuo, Z., Yan, X., Wang, H.: A fixed-time output feedback control scheme for double integrator systems. Automatica 80, 17–24 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Tian, B., Lu, H., Zuo, Z., Yang, W.: Fixed-time leader-follower output feedback consensus for second-order multiagent systems. IEEE Trans. Cybern. (2018). https://doi.org/10.1109/TCYB.2018.2794759

  13. Jadbabaie, A., Lin, J., Morse, A.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Autom. Control 48(6), 988–1001 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Olfatisaber, R., Murray, R.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 49(9), 1520–1533 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ren, W., Beard, R.: Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Trans. Autom. Control 50(5), 655–661 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Meng, Z., Yang, T., Li, G., Ren, W., Wu, D.: Synchronization of coupled dynamical systems: Tolerance to weak connectivity and arbitrarily bounded time-varying delays. IEEE Trans. Autom. Control 63(6), 1791–1797 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dong, X., Zhou, Y., Ren, Z., Zhong, Y.: Time-varying formation tracking for second-order multi-agent systems subjected to switching topologies with application to quadrotor formation flying. IEEE Trans. Ind. Electron. 64(6), 5014–5024 (2017)

    Article  Google Scholar 

  18. Lin, Z., Broucke, M., Francis, B.: Local control strategies for groups of mobile autonomous agents. IEEE Trans. Autom. Control 49(4), 622–629 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Tian, B., Fan, W., Su, R., Zong, Q.: Real-time trajectory and attitude coordination control for reusable launch vehicle in reentry phase. IEEE Trans. Ind. Electron. 62(3), 1639–1650 (2015)

    Article  Google Scholar 

  20. Zhao, Y., Duan, Z., Wen, G., Chen, G.: Distributed finite-time tracking for a multi-agent system under a leader with bounded unknown acceleration. Syst. Control Lett. 81, 8–13 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Filippov, A.: Differential Equations with Discontinuous Right Hand Sides. Kluwer Academic Publishers, Dordrecht (1988)

    Book  MATH  Google Scholar 

  22. Orlov, I.V.: Discontinuous Systems: Lyapunov Analysis and Robust Synthesis Under Uncertainty Conditions. Springer, Berlin (2009)

    MATH  Google Scholar 

  23. Zong, Q., Shao, S.: Decentralized finite-time attitude synchronization for multiple rigid spacecraft via a novel disturbance observer. ISA Trans. 65, 150–163 (2016)

    Article  Google Scholar 

  24. Zhu, Z., Xia, Y., Fu, M.: Attitude stabilization of rigid spacecraft with finite-time convergence. Int. J. Robust Nonlinear Control 21(6), 686–702 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, D., Zong, Q., Tian, B., Shao, S., Zhang, X., Zhao, X.: Neural network disturbance observer-based distributed finite-time formation tracking control for multiple unmanned helicopters. ISA Trans. 73, 208–226 (2018)

    Article  Google Scholar 

  26. Tian, B., Liu, L., Lu, H., Zuo, Z., Zong, Q., Zhang, Y.: Multivariable finite time attitude control for quadrotor uav: Theory and experimentation. IEEE Trans. Ind. Electron. 65(3), 2567–2577 (2018)

    Article  Google Scholar 

  27. Li, Z., Ren, W., Liu, X., Fu, M.: Consensus of multi-agent systems with general linear and Lipschitz nonlinear dynamics using distributed adaptive protocols. IEEE Trans. Autom. Control 58(7), 1786–1791 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Li, X., Luo, X., Wang, J., Guan, X.: Finite-time consensus of nonlinear multi-agent system with prescribed performance. Nonlinear Dyn. 91(4), 2397–2409 (2018)

    Article  MATH  Google Scholar 

  29. Wang, D., Zong, Q., Tian, B., Wang, F., Dou, L.: Finite-time fully distributed formation reconfiguration control for uav helicopters. Int. J. Robust Nonlinear Control (2018). https://doi.org/10.1002/rnc.4361

  30. Kamal, S., Moreno, J., Chalanga, A., Bandyopadhyay, B., Fridman, L.: Continuous terminal sliding-mode controller. Automatica 69, 308–314 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Indira, N., Christopher, E.: A multivariable super-twisting sliding mode approach. Automatica 50(3), 984–988 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wang, J., Zong, Q., Su, R., Tian, B.: Continuous high order sliding mode controller design for a flexible air-breathing hypersonic vehicle. ISA Trans. 53(3), 690–698 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (Nos. 61673294, 61773278, 61573060, 61703134, 61503323, 61603274), Joint fund of the equipment pre Research Ministry of Education (6141A02022328), Natural Science Foundation of Tianjin (No. 17JCQNJC04400), Youth Foundation of Hebei Educational Committee (No. QN2015068), Natural Science Foundation of Hebei Province (Nos. F2015202150, F2017203130) and Research Project of Tianjin Municipal Education Commission (Grant No. 2017KJ249).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bailing Tian.

Ethics declarations

Conflict of interest

No conflict of interest exits in the submission of this manuscript, and the manuscript is approved by all authors for publication.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Zong, Q., Tian, B. et al. Adaptive finite-time reconfiguration control of unmanned aerial vehicles with a moving leader. Nonlinear Dyn 95, 1099–1116 (2019). https://doi.org/10.1007/s11071-018-4618-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4618-y

Keywords

Navigation