Skip to main content
Log in

Novel identification approach for nonlinear systems with hysteresis

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A new identification approach for a nonlinear system with hysteresis, namely a cascading Bouc–Wen hysteresis model with linear dynamics, is proposed in this study. The properties of the Bouc–Wen model are analyzed under specific inputs. These properties play important roles in the parameter identification procedure. Unlike the commonly used iterative search or two-step identification scheme, the proposed approach completely decouples the identification tasks of linear and nonlinear parts and transforms each task into a linear task without iteration. First, a set of equations based on the aforementioned properties is developed. These equations enable the least squares estimation of all the parameters involved in linear dynamics with the use of the designed input signals and extended state estimation. Second, after the linear part is obtained, the hysteresis output is observed and used to establish the least squares estimation of all the parameters in the nonlinear part based on its input–output data. Simulation studies are performed to demonstrate the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ji, D.H., Koo, J.H., Yoo, W.J.: Precise tracking control of piezoelectric actuators based on a hysteresis observer. Nonlinear Dyn. 70(3), 1969–1976 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Tan, X., Baras, J.S.: Modeling and control of hysteresis in magnetostrictive actuators. Automatica 40, 1469–1480 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Edardar, M., Tan, X., Khalil, H.K.: Design and analysis of sliding mode controller under approximate hysteresis compensation. IEEE Trans. Control Syst. Technol. 23(2), 598–608 (2015)

    Article  Google Scholar 

  4. Li, Z., Su, C.Y., Chai, T.: Compensation of hysteresis nonlinearity in magnetostrictive actuators with inverse multiplicative structure for Preisach model. IEEE Trans. Autom. Sci. Eng. 11(2), 613–619 (2014)

    Article  Google Scholar 

  5. Wen, Y.K.: Method for random vibration of hysteretic system. J. Eng. Mech. Div. 102(2), 249–263 (1976)

    Google Scholar 

  6. Bouc, R.: Forced vibration of mechanical systems with hysteresis. In: Proceedings of the Conference on Nonlinear Oscillations, Prague, Czechoslovakia (1967)

  7. Nie, Z., Fu, C., Liu, R.: Asymmetric Prandtl–Ishlinskii hysteresis model for giant magnetostrictive actuator. J. Adv. Comput. Intell. Intell. Inform. 20(2), 223–230 (2016)

    Article  Google Scholar 

  8. Oh, J.H., Bernstein, D.S.: Semilinear Duhem model for rate-independent and rate-dependent hysteresis. IEEE Trans. Autom. Control 50(5), 631–645 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Xie, Y., Tan, Y., Dong, R.: Nonlinear modeling and decoupling control of XY micropositioning stages with piezoelectric actuators. IEEE/ASME Trans. Mechatron. 18(3), 821–832 (2013)

    Article  Google Scholar 

  10. Giri, F., Rochdi, Y., Chaoui, F.Z.: Identification of Hammerstein systems in presence of hysteresis-backlash and hysteresis-relay nonlinearities. Automatica 44(3), 767–775 (2008)

    Article  MathSciNet  Google Scholar 

  11. Noël, J.P., Esfahani, A.F., Kerschen, G. et al.: Hysteresis identification using nonlinear state-space models. In: Kerschen, G. (ed.) Nonlinear Dynamics, vol. 1, pp. 323–338. Springer, Berlin (2016)

  12. Laudani, A., Fulginei, F.R., Salvini, A.: Bouc–Wen hysteresis model identification by the metric-topological evolutionary optimization. IEEE Trans. Magn. 50(2), 621–624 (2014)

    Article  Google Scholar 

  13. Wang, G., Chen, G., Bai, F.: Modeling and identification of asymmetric Bouc–Wen hysteresis for piezoelectric actuator via a novel differential evolution algorithm. Sens. Actuators A Phys. 235, 105–118 (2015)

    Article  Google Scholar 

  14. Xu, Q., Li, Y.: Model predictive discrete-time sliding mode control of a nanopositioning piezostage without modeling hysteresis. IEEE Trans. Control Syst. Technol. 20(4), 983–994 (2012)

    Article  Google Scholar 

  15. Ikhouane, F., Gomis-Bellmunt, O.: A limit cycle approach for the parametric identification of hysteretic systems. Syst. Control Lett. 57(8), 663–669 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu, L., Tan, K.K., Teo, C.S.: Development of an approach toward comprehensive identification of hysteretic dynamics in piezoelectric actuators. IEEE Trans. Control Syst. Technol. 21(5), 1834–1845 (2013)

    Article  Google Scholar 

  17. Gu, G.Y., Li, C.X., Zhu, L.M.: Modeling and identification of piezoelectric-actuated stages cascading hysteresis nonlinearity with linear dynamics. IEEE/ASME Trans. Mechatron. 21(3), 1792–1797 (2016)

    Article  Google Scholar 

  18. Li, J.W., Chen, X.B., Zhang, W.J.: A new approach to modeling system dynamics: in the case of a piezoelectric actuator with a host system. IEEE/ASME Trans. Mechatron. 15(3), 371–380 (2010)

  19. Yong, Y.K., Liu, K., Moheimani, S.O.R.: Reducing cross-coupling in a compliant XY nanopositioner for fast and accurate raster scanning. IEEE Trans. Control Syst. Technol. 18(5), 1172–1179 (2010)

    Article  Google Scholar 

  20. Ismail, M., Ikhouane, F., Rodellar, J.: The hysteresis Bouc–Wen model: a survey. Arch. Comput. Methods Eng. 16(2), 161–188 (2009)

    Article  MATH  Google Scholar 

  21. Ikhouane, F., Rodellar, J.: On the hysteretic Bouc–Wen model. Nonlinear Dyn. 42(1), 79–95 (2005)

    Article  MATH  Google Scholar 

  22. Ikhouane, F., Rodellar, J.: On the hysteretic Bouc–Wen model-part II: robust parametric identification. Nonlinear Dyn. 42(1), 79–95 (2005)

    Article  MATH  Google Scholar 

  23. Ikhouane, F., Mañosa, V., Rodellar, J.: Dynamic properties of the hysteretic Bouc–Wen model. Syst. Control Lett. 56(3), 197–205 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Han, J.: From PID to active disturbance rejection control. IEEE Trans. Ind. Electron. 56(3), 900–906 (2009)

    Article  Google Scholar 

  25. Dong, L., Zhang, Y., Gao, Z.: A robust decentralized load frequency controller for interconnected power systems. ISA Trans. 51(3), 410–419 (2012)

    Article  Google Scholar 

  26. Zhao, C., Li, D.: Control design for the SISO system with the unknown order and the unknown relative degree. ISA Trans. 53(4), 858–872 (2014)

    Article  MathSciNet  Google Scholar 

  27. Goforth, F.J., Zheng, Q., Gao, Z.: A novel practical control approach for rate independent hysteretic systems. ISA Trans. 51(3), 477–484 (2012)

    Article  Google Scholar 

  28. Gao, Z.: Scaling and bandwidth-parameterization based controller tuning. In: Proceedings of the American Control Conference, pp. 4989–4996. IEEE, New York (2003)

Download references

Acknowledgements

This work was supported by Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University (Grant ZQN-PY408, Z14Y0002), National Natural Science Foundation of China (Grant 61403149), Natural Science Foundation of Fujian Province (Grant 2015J01261, 2016J05165), and Scientific Research Fund of Hunan Provincial Education Department (Grant 15B238).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuo-Yun Nie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, ZY., Liu, RJ., Wang, QG. et al. Novel identification approach for nonlinear systems with hysteresis. Nonlinear Dyn 95, 1053–1066 (2019). https://doi.org/10.1007/s11071-018-4615-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4615-1

Keywords

Navigation