Determination of thrusts to generate artificial equilibrium points in binary systems with applications to a planar solar sail


In this work, the artificial equilibrium points for a general two-body system are derived, visualized, and summarized as functions of the direction of the thrust, for several directions. The results for the Sun-Earth system are also presented. Planar solar sail applications are also considered.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21


  1. 1.

    Dusek, Hermann M.: Motion in the vicinity of libration points of a generalized restricted three-body model. Prog. Astronaut. Rocket. 54, 17–37 (1966)

    MATH  Google Scholar 

  2. 2.

    Tsiolkovsky, K.E.: Extension of man into outer space. In: Proceedings of Symposium on Jet Propulsion, vol. 2. United Scientific and Technical Press (1936)

  3. 3.

    Tsander, K.: From a Scientific Heritage. NASA Technical Translation No TTf-541, NASA, Washington, DC (1967)

  4. 4.

    Forward, R.L.: Statite—a spacecraft that does not orbit. J. Spacecr. Rockets 28(5), 606 (1991)

    Article  Google Scholar 

  5. 5.

    Simmons, J.F.L., McDonald, A.J.C., Brown, J.C.: The restricted 3-body problem with radiation pressure. Celest. Mech. 35, 145 (1985)

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    McInnes, C.R., McDonald, A.J.C., Simmons, J.F.L., MacDonald, E.W.: Solar sail parking in restricted three-body systems. J. Guid. Control Dyn. 17(2), 399 (1994)

    Article  MATH  Google Scholar 

  7. 7.

    McInnes, C.R.: Dynamics, stability, and control of displaced non-Keplerian orbits. J. Guid. Control Dyn. 21(5), 799 (1998)

    Article  Google Scholar 

  8. 8.

    Broschart, S.B., Scheeres, D.J.: Control of hovering spacecraft near small bodies: application to asteroid 25143 Itokawa. J. Guid. Control Dyn. 28(2), 343–354 (2005)

    Article  Google Scholar 

  9. 9.

    Bu, S., Li, S., Yang, H.: Artificial equilibrium points in binary asteroid systems with continuous low-thrust. Astrophys. Space Sci. 362, 137 (2017)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Bombardelli, C., Pelaez, J.: On the stability of artificial equilibrium points in the circular restricted three-body problem. Celest. Mech. Dyn. Astron. 109(1), 13–26 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Ranjana, K., Kumar, V.: On the artificial equilibrium points in a generalized restricted problem of three bodies. Int. J. Astron. Astrophys. 3, 508–516 (2013)

    Article  Google Scholar 

  12. 12.

    Aliasi, G., Mengali, G., Quarta, A.A.: Artificial equilibrium points for a generalized sail in the circular restricted three-body problem. Celest. Mech. Dyn. Astron. 110(4), 343–368 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    de Almeida Jr., A.K., Prado, A.F.B.A., Sanchez, D.M., Yokoyama, T.: Searching for artificial equilibrium points to place satellites above and below \(L_3\) in the Sun–Earth system. Rev. Mex. Astron. Astrofis. 53, 349 (2017)

    Google Scholar 

  14. 14.

    Baoying, H., McInnes, C.R.: Solar sail halo orbits at the sunearth artificial l1 point. Celest. Mech. Dyn. Astron. 94, 155 (2006)

  15. 15.

    Waters, T.J., McInnes, C.R.: Periodic orbits above the ecliptic in the solar-sail restricted three-body problem. J. Guid. Control Dyn. 30(3), 687 (2007)

    Article  Google Scholar 

  16. 16.

    Baig, S., McInnes, C.R.: Artificial halo orbits for low-thrust propulsion spacecraft. Celest. Mech. Dyn. Astron. 104, 321 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  17. 17.

    Farres, A., Jorba, A.: Dynamics, geometry and solar sails. Indag. Math. 27(5), 1245 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  18. 18.

    Goebel, D.M., Katz, I.: Fundamentals of Electric Propulsion, Ion and Hall Thrusters. Wiley, New Jersey (2008)

    Google Scholar 

  19. 19.

    McInnes, C.R.: Solar Sailing Technology, Dynamics and Mission Applications. Springer, Berlin (2004)

    Google Scholar 

  20. 20.

    Ueno, K.: Thrust measurement of pure magnetic sail. Trans. JSASS Space Tech. Jpn. 7(26), 65–69 (2009)

    Google Scholar 

  21. 21.

    Zubrin, R.M., Andrews, D.G.: Magnetic sails and interplanetary travel. J. Spacecr. Rockets 28(2), 197–203 (1991).

    Article  Google Scholar 

  22. 22.

    Mengali, G., Quarta, A.A.: Non-Keplerian orbits for electric sails. Celest. Mech. Dyn. Astron. 105, 179195 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  23. 23.

    Janhunen, P.: Electric sail for spacecraft propulsion. J. Propuls. Power 20(4), 763–764 (2004)

    Article  Google Scholar 

  24. 24.

    Janhunen, P., Sandroos, A.: Simulation study of solar wind push on a charged wire: basis of solar wind electric sail propulsion. Ann. Geophys. 25, 755–767 (2007)

    Article  Google Scholar 

  25. 25.

    Yamakawa, H.: Magneto-plasma sail: an engineering satellite concept and its application for outer planet missions. Acta Astron. 59(8–11), 777 (2006)

    Article  Google Scholar 

  26. 26.

    Symon, Keith R.: Mechanics, 2nd edn. Campus Ltda, Rio de Janeiro (1986)

    Google Scholar 

  27. 27.

    Luzum, Brian, et al.: The IAU 2009 system of astronomical constants: the report of the IAU working group on numerical standards for Fundamental Astronomy. Celest. Mech. Dyn. Astron. 110, 293 (2011)

    Article  MATH  Google Scholar 

Download references


The authors wish to express their appreciation for the financial support from the Coordination for the Improvement of Higher Education Personnel (CAPES) and the support provided by Grants 406841/2016-0, 301338/2016-7, and 305834/2013-4 from the National Council for Scientific and Technological Development (CNPq), Grants 2016/24561-0 and 2016/14665-2 from São Paulo Research Foundation (FAPESP).

Author information



Corresponding author

Correspondence to A. K. de Almeida Jr..

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest concerning the publication of this manuscript.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Almeida, A.K., Prado, A.F.B.A. & Yokoyama, T. Determination of thrusts to generate artificial equilibrium points in binary systems with applications to a planar solar sail. Nonlinear Dyn 95, 919–942 (2019).

Download citation


  • Astrodynamics
  • Restricted three-body problem
  • Nonlinear systems
  • Artificial equilibrium point
  • Solar sail