Skip to main content

Advertisement

Log in

Vehicle motion control under equality and inequality constraints: a diffeomorphism approach

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This study addresses the problem of vehicle lateral and yaw motion control when both equality and inequality (i.e., bilateral and unilateral) constraints are involved. By using the Udwadia–Kalaba approach, the explicit equation of vehicle motion with equality constraints is established, and the corresponding control inputs can be obtained from the equation. The equality constraints aim to render the vehicle to move along the desired trajectory. However, as the initial conditions of vehicle motion may take values leading the vehicle to violate the road-bound lines, it is necessary to impose an additional constraint to constrain the vehicle to move within the road-bound lines, which is an inequality constraint. As the inequality constraint cannot be handled by the original Udwadia–Kalaba approach, a creative diffeomorphism approach is proposed to integrate the inequality constraint into the equality constraints, and thus it creatively enables the Udwadia–Kalaba approach to deal with both equality and inequality constraints. By solving the equation established based on the Udwadia–Kalaba approach and diffeomorphism approach, the control inputs that can render the vehicle to move along the desired trajectory without violating the road-bound lines are obtained. The effectiveness of the proposed method is demonstrated by numerical simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Nam, K., Fujimoto, H., Hori, H.: Lateral stability control of in-wheel-motor-driven electric vehicles based on sideslip angle estimation using lateral tire force sensors. IEEE Trans. Veh. Technol. 61(5), 1972–1985 (2012)

    Article  Google Scholar 

  2. Weir, D.H., McRuer, D.T.: Dynamics of driver vehicle steering control. Automatica 6(1), 87–98 (1970)

    Article  Google Scholar 

  3. Chen, C., Tomizuka, M.: Dynamic modeling of tractor-semitrailer vehicles in automated highway systems. In: California Partners for Advanced Transit and Highways (PATH) (1995)

  4. Chen, C., Tomizuka, M.: Lateral control of tractor-semitrailer vehicles in automated highway systems. In: California Partners for Advanced Transit and Highways (PATH) (1996)

  5. Lee, T., Chen, Y.H., Chuang, C.: Control for tractor-semitrailer vehicle systems: a Lyapunov minimax approach. Dyn. Control 9(1), 21–37 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Matsumoto, N., Tomizuka, M.: Vehicle lateral velocity and yaw rate control with two independent control inputs. J. Dyn. Syst.-Trans. ASME 114, 606–613 (1992)

    Article  Google Scholar 

  7. Besselink, B.C.: Computer controlled steering system for vehicles having two independently driven wheels. Comput. Electron. Agric. 39(3), 209–226 (2003)

    Article  Google Scholar 

  8. Mutoh, N., Kazama, T., Takita, K.: Driving characteristics of an electric vehicle system with independently driven front and rear wheels. IEEE Trans. Ind. Electron. 53(3), 803–813 (2006)

    Article  Google Scholar 

  9. Kalaba, R.E., Udwadia, F.E.: Analytical dynamics with constraint forces that do work in virtual displacements. Appl. Math. Comput. 121(2), 211–217 (2001)

    MathSciNet  MATH  Google Scholar 

  10. Udwadia, F.E., Kalaba, R.E.: On the foundations of analytical dynamics. Int. J. Nonlinear Mech. 37(6), 1079–1090 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Udwadia, F.E., Kalaba, R.E.: Analytical Dynamics: A New Approach. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  12. Sun, H., Zhao, H., Zhen, S.: Application of the Udwadia–Kalaba approach to tracking control of mobile robots. Nonlinear Dyn. 83, 389–400 (2016)

    Article  MathSciNet  Google Scholar 

  13. Schutte, A.D., Dooley, B.A.: Constrained motion of tethered satellites. J. Aerosp. Eng. 18(4), 242–250 (2005)

    Article  Google Scholar 

  14. Pappalardo, C.M.: A natural absolute coordinate formulation for the kinematic and dynamic analysis of rigid multibody systems. Nonlinear Dyn. 81(4), 1841–1869 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen, Y.H.: Constraint-following servo control design for mechanical systems. J. Vib. Control 15(3), 369–389 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chen, Y.H., Zhang, X.: Adaptive robust approximate constraint-following control for mechanical systems. J. Frankl. Inst. 347(1), 69–86 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Huang, Q., Chen, Y.H., Cheng, A.: Adaptive robust control for fuzzy mechanical systems: constraint-following and redundancy in constraints. IEEE Trans. Fuzzy Syst. 23(4), 1113–1126 (2015)

    Article  Google Scholar 

  18. Sun, H., Zhao, H., Huang, K., Zhen, S., et al.: Adaptive robust constraint-following control for satellite formation flying with system uncertainty. J. Guid. Control Dyn. 40(6), 1–7 (2017)

    Article  Google Scholar 

  19. Jacobson, D., Lele, M.: A transformation technique for optimal control problems with a state variable inequality constraint. IEEE Trans. Autom. Control 14(5), 457–464 (1969)

    Article  Google Scholar 

  20. Itiki, C., Kalaba, R.E., Udwadia, F.E.: Inequality constraints in the process of jumping. Appl. Math. Comput. 78(2–3), 163–173 (1996)

    MATH  Google Scholar 

  21. Abramova, I., Latyshev, S.: Using the fundamental equation of constrained motion with inequality constraints. Appl. Math. Comput. 215(8), 2858–2876 (2009)

    MathSciNet  MATH  Google Scholar 

  22. Loxton, R.C., Teo, K.L., Rehbock, V., et al.: Optimal control problems with a continuous inequality constraint on the state and the control. Automatica 45(10), 2250–2257 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu, X., Hu, Y., Feng, J., et al.: A novel penalty approach for nonlinear dynamic optimization problems with inequality path constraints. IEEE Trans. Autom. Control 59(10), 2863–2867 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Prajna, S., Jadbabaie, A., Pappas, G.J.: A framework for worst-case and stochastic safety verification using barrier certificates. IEEE Trans. Autom. Control 52(8), 1415–1428 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Tee, K.P., Ge, S.S., Tay, E.H.: Barrier Lyapunov functions for the control of output-constrained nonlinear systems. Automatica 45(4), 918–927 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Liu, Y.J., Tong, S.: Barrier Lyapunov functions for Nussbaum gain adaptive control of full state constrained nonlinear systems. Automatica 76, 143–152 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rossetter, E.J., Gerdes, J.C.: Lyapunov based performance guarantees for the potential field lane-keeping assistance system. J. Dyn. Syst. Meas. Control 128(3), 510–522 (2006)

    Article  Google Scholar 

  28. Wieland, P., Allgöwer, F.: Constructive safety using control barrier functions. IFAC Proc. 40(12), 462–467 (2007)

    Article  Google Scholar 

  29. Ames, A.D., Xu, X., Grizzle, J.W., et al.: Control barrier function based quadratic programs for safety critical systems. IEEE Trans. Autom. Control 62(8), 3861–3876 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Xu, X., Grizzle, J.W., Tabuada, P., et al.: Correctness guarantees for the composition of lane keeping and adaptive cruise control. IEEE Trans. Sci. Eng. (2017). https://doi.org/10.1109/TASE.2017.2760863

    Article  Google Scholar 

  31. Xu, X.: Constrained control of input–output linearizable systems using control sharing barrier functions. Automatica 87, 195–201 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  32. Acosta, J.Á., Dòria-Cerezo, A., Fossas, E.: Diffeomorphism-based control of nonlinear systems subject to state constraints with actual applications. In: Control Applications (CCA), IEEE Conference, pp. 923–928 (2014)

  33. Kimura, S., Nakamura, H., Ibuki, T., et al.: Revived transformation for nonlinear systems subject to state constraints. In: Decision and Control (CDC), IEEE 54th Annual Conference, pp. 7554–7559 (2015)

  34. Khalil, H.K.: Nonlinear Control. Prentice-Hall, Englewood Cliffs (2014)

    Google Scholar 

  35. Boyce, W.E., DiPrima, R.C., Meade, D.B.: Elementary Differential Equations and Boundary Value Problems. Wiley, New York (1992)

    MATH  Google Scholar 

  36. Udwadia, F.E.: A new perspective on the tracking control of nonlinear structural and mechanical systems. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 459(2035), 1783–1800 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  37. Noble, B., Daniel, J.W.: Applied Linear Algebra. Prentice-Hall, Englewood Cliffs (1988)

    MATH  Google Scholar 

  38. Nagai, M., Hirano, Y., Yamanaka, S.: Integrated control of active rear wheel steering and direct yaw moment control. Veh. Syst. Dyn. 27(5–6), 357–370 (1997)

    Article  Google Scholar 

  39. Chen, Y., Hedrick, J.K., Guo, K.: A novel direct yaw moment controller for in-wheel motor electric vehicles. Veh. Syst. Dyn. 51(6), 925–942 (2013)

    Article  Google Scholar 

  40. Mousavinejad, E., Han, Q., Yang, F., et al.: Integrated control of ground vehicles dynamics via advanced terminal sliding mode control. Veh. Syst. Dyn. 55(2), 268–294 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The paper is supported by National Natural Science Foundation of China (No. 11572121), Independent Research Projects of State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body in Hunan University (Grant No. 71375004) and the China Scholarship Council (201606130100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Yin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, H., Chen, YH. & Yu, D. Vehicle motion control under equality and inequality constraints: a diffeomorphism approach. Nonlinear Dyn 95, 175–194 (2019). https://doi.org/10.1007/s11071-018-4558-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4558-6

Keywords

Navigation