Skip to main content
Log in

Generation and control of multiple solitons under the influence of parameters

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, the analytic three-soliton solution for a high-order nonlinear Schrödinger equation is obtained by the Hirota’s bilinear method. The transmission characteristics of three solitons are discussed. By selecting relevant parameters, soliton interactions are presented, and the method of generating new solitons is suggested. The influences of corresponding parameters on soliton transmission and interactions are analyzed. Results of this paper are helpful for enriching the soliton theory and studying the signal routing system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wazwaz, A.M., El-Tantawy, S.A.: New \((3+1)\)-dimensional equations of Burgers type and Sharma–Tasso–Olver type: multiple-soliton solutions. Nonlinear Dyn. 87(4), 2457–2461 (2017)

    Article  MathSciNet  Google Scholar 

  2. Wazwaz, A.M., Osman, M.S.: Analyzing the combined multi-waves polynomial solutions in a two-layer-liquid medium. Comput. Math. Appl. 76, 276–283 (2018)

    Article  MathSciNet  Google Scholar 

  3. Wazwaz, A.M.: A new integrable equation combining the modified KdV equation with the negative-order modified KdV equation: multiple soliton solutions and a variety of solitonic solutions. Waves Random Complex 28(3), 533–543 (2018)

    Article  MathSciNet  Google Scholar 

  4. Wazwaz, A.M.: Negative-order integrable modified KdV equations of higher orders. Nonlinear Dyn. (in press). https://doi.org/10.1007/s11071-018-4265-3

  5. Wazwaz, A.M.: Painlevé analysis for a new integrable equation combining the modified Calogero–Bogoyavlenskii–Schiff (MCBS) equation with its negative-order form. Nonlinear Dyn. 91(2), 877–883 (2018)

    Article  Google Scholar 

  6. Osman, M.S., Wazwaz, A.M.: An efficient algorithm to construct multi-soliton rational solutions of the \((2+1)\)-dimensional KdV equation with variable coefficients. Appl. Math. Comput. 321, 282–289 (2018)

    MathSciNet  Google Scholar 

  7. Wazwaz, A.M.: Two-mode fifth-order KdV equations: necessary conditions for multiple-soliton solutions to exist. Nonlinear Dyn. 87(3), 1685–1691 (2017)

    Article  MathSciNet  Google Scholar 

  8. Wazwaz, A.M., El-Tantawy, S.A.: A new integrable \((3+1)\)-dimensional KdV-like model with its multiple-soliton solutions. Nonlinear Dyn. 83(3), 1529–1534 (2016)

    Article  MathSciNet  Google Scholar 

  9. Wazwaz, A.M., El-Tantawy, S.A.: A new \((3+1)\)-dimensional generalized Kadomtsev–Petviashvili equation. Nonlinear Dyn. 84(2), 1107–1112 (2016)

    Article  MathSciNet  Google Scholar 

  10. Wazwaz, A.M.: A new integrable equation that combines the KdV equation with the negative-order KdV equation. Math. Methods Appl. Sci. 41(1), 80–87 (2018)

    Article  MathSciNet  Google Scholar 

  11. Radhakrishnan, R., Kundu, A., Lakshmanan, M.: Coupled nonlinear Schrodinger equations with cubic-quintic nonlinearity: integrability and soliton interaction in non-Kerr media. Phys. Rev. E. 60, 3314–3323 (1999)

    Article  Google Scholar 

  12. Zhang, H., Xu, T., Li, J.: Integrability of an N-coupled nonlinear Schrödinger system for polarized optical waves in an isotropic medium via symbolic computation. Phys. Rev. E 77, 026605–026614 (2008)

    Article  MathSciNet  Google Scholar 

  13. Dong, H.H., Zhao, K., Yang, H.W., Li, Y.Q.: Generalised \((2+1)\)-dimensional super mKdV hierarchy for integrable systems in soliton theory. East Asian J. Appl. Math. 5, 256 (2015)

    Article  MathSciNet  Google Scholar 

  14. Chen, J.C., Zhu, S.D.: Residual symmetries and soliton-cnoidal wave interaction solutions for the negative-order Korteweg–de Vries equation. Appl. Math. Lett. 73, 136 (2017)

    Article  MathSciNet  Google Scholar 

  15. Zhang, X.E., Chen, Y., Zhang, Y.: Breather, lump and X soliton solutions to nonlocal KP equation. Comput. Math. Appl. 74, 2341 (2017)

    Article  MathSciNet  Google Scholar 

  16. Zhao, H.Q., Ma, W.X.: Mixed lump–kink solutions to the KP equation. Comput. Math. Appl. 74, 1399 (2017)

    Article  MathSciNet  Google Scholar 

  17. McAnally, M., Ma, W.X.: An integrable generalization of the D-Kaup–Newell soliton hierarchy and its bi-Hamiltonian reduced hierarchy. Appl. Math. Comput. 323, 220 (2018)

    MathSciNet  Google Scholar 

  18. Clarkson, P.A., Tszynski, J.A.: Exact solutions of the multidimensional derivative nonlinear Schrödinger equation for many-body systems of criticality. J. Phys. A Math. Gen. 23, 4269–4288 (1990)

    Article  Google Scholar 

  19. Khodama, Y.: Optical solitons in a monomode fiber. J. Stat. Phys. 39, 597–614 (1985)

    Article  MathSciNet  Google Scholar 

  20. Liu, W.J., Liu, M.L., Han, H.H., Fang, S.B., Teng, H., Lei, M., Wei, Z.Y.: Nonlinear optical properties of \(\text{ WSe }_{2}\) and \(\text{ MoSe }_{2}\) films and their applications in passively Q-switched erbium doped fiber lasers [Invited]. Photonics Res. 6, C15–C21 (2018)

    Article  Google Scholar 

  21. Johnson, R.S.: On the modulation of water waves in the neighbourhood of \(\text{ kh }\ \approx 1.363\). Proc. R. Soc. Lond. A 357, 131–141 (1977)

    Article  MathSciNet  Google Scholar 

  22. Liu, W.J., Liu, M.L., OuYang, Y.Y., Hou, H.R., Lei, M., Wei, Z.Y.: CVD-grown \(\text{ MoSe }_{2}\) with high modulation depth for ultrafast mode-locked erbium-doped fiber laser. Nanotechnology 29, 394002 (2018)

    Article  Google Scholar 

  23. Hasegawa, A., Tappert, F.: Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. II. Normal dispersion. Appl. Phys. Lett. 23, 171 (1973)

    Article  Google Scholar 

  24. Mollenauer, L.F., Stolen, R.H., Gordon, J.P.: Experimental observation of picosecond pulse narrowing and solitons in optical fiber. Phys. Rev. Lett. 45, 1095 (1980)

    Article  Google Scholar 

  25. Liu, W.J., Liu, M.L., Yin, J.D., Chen, H., Lu, W., Fang, S., Teng, H., Lei, M., Yan, P.G., Wei, Z.Y.: Tungsten diselenide for all-fiber lasers with the chemical vapor deposition method. Nanoscale 10, 7971–7977 (2018)

    Article  Google Scholar 

  26. Li, W.Y., OuYang, Y.Y., Ma, G.L., Liu, M.L., Liu, W.J.: Q-switched all-fiber laser with short pulse duration based on tungsten diselenide. Laser Phys. 28, 055104 (2018)

    Article  Google Scholar 

  27. Liu, W.J., Liu, M.L., Lei, M., Fang, S.B., Wei, Z.Y.: Titanium selenide saturable absorber mirror for passive Q-switched Er-doped fiber laser. IEEE. J. Sel. Top. Quantum Electron. 24, 0901005 (2018)

    Google Scholar 

  28. Liu, W.J., Liu, M.L., OuYang, Y.Y., Hou, H.R., Ma, G.L., Lei, M., Wei, Z.Y.: Tungsten diselenide for mode-locked erbium-doped fiber lasers with short pulse duration. Nanotechnology 29, 174002 (2018)

    Article  Google Scholar 

  29. Yang, C.Y., Li, W.Y., Yu, W.T., Liu, M.L., Zhang, Y.J., Ma, G.L., Lei, M., Liu, W.J.: Amplification, reshaping, fission and annihilation of optical solitons in dispersion-decreasing fiber. Nonlinear Dyn. 92, 203–213 (2018)

    Article  Google Scholar 

  30. Li, W.Y., Ma, G.L., Yu, W.T., Zhang, Y.J., Liu, M.L., Yang, C.Y., Liu, W.J.: Soliton structures in the \((1+1)\)-dimensional Ginzburg–Landau equation with a parity-time-symmetric potential in ultrafast optics. Chin. Phys. B 27, 030504 (2018)

    Article  Google Scholar 

  31. Liu, W.J., Zhu, Y.N., Liu, M.L., Wen, B., Fang, S., Teng, H., Lei, M., Liu, L.M., Wei, Z.Y.: Optical properties and applications for \(\text{ MoS }_{2}\)-\(\text{ Sb }_{2}\text{ Te }_{3}\)-\(\text{ MoS }_{2}\) heterostructure materials. Photonics Res. 6, 220–227 (2018)

    Article  Google Scholar 

  32. Liu, M.L., Liu, W.J., Yan, P.G., Fang, S.B., Teng, H., Wei, Z.Y.: High-power \(\text{ MoTe }_{2}\)-based passively Q-switched erbium-doped fiber laser. Chin. Opt. Lett. 16, 020007 (2018)

    Article  Google Scholar 

  33. Yu, W.T., Yang, C.Y., Liu, M.L., Zhang, Y.J., Liu, W.J.: Interactions of solitons, dromion-like structures and butterfly-shaped pulses for variable coefficient nonlinear Schrödinger equation. Optik 159, 21–30 (2018)

    Article  Google Scholar 

  34. Liu, M.L., Liu, W.J., Pang, L.H., Teng, H., Fang, S.B., Wei, Z.Y.: Ultrashort pulse generation in mode-locked erbium-doped fiber lasers with tungsten disulfide saturable absorber. Opt. Commun. 406, 72–75 (2018)

    Article  Google Scholar 

  35. Liu, W.J., Yang, C.Y., Liu, M.L., Yu, W.T., Zhang, Y.J., Lei, M.: Effect of high-order dispersion on three-soliton interactions for the variable-coefficients Hirota equation. Phys. Rev. E. 96, 042201 (2017)

    Article  MathSciNet  Google Scholar 

  36. Pushkarov, D., Tanev, S.: Bright and dark solitary wave propagation and bistability in the anomalous dispersion region of optical waveguides with third- and fifth-order nonlinearities. Opt. Commun. 124, 354 (1996)

    Article  Google Scholar 

  37. Mahalingam, A., Porsezian, K.: Propagation of dark solitons with higher-order effects in optical fibers. Phys. Rev. E. 64, 046608 (2001)

    Article  Google Scholar 

  38. Artigas, D., Torner, L., Torres, J.P., Akhmedievb, N.N.: Asymmetrical splitting of higher-order optical solitons induced by quintic nonlinearity. Opt. Commun. 143, 322–328 (1997)

    Article  Google Scholar 

  39. Huang, Q.M., Gao, Y.T., Hu, L.: Breather-to-soliton transition for a sixth-order nonlinear Schrödinger equation in an optical fiber. Appl. Math. Lett. 75, 135–140 (2018)

    Article  MathSciNet  Google Scholar 

  40. Sun, W.R.: Breather-to-soliton transitions and nonlinear wave interactions for the nonlinear Schrödinger equation with the sextic operators in optical fibers. Ann. Phys. 529, 1600227 (2017)

    Article  Google Scholar 

  41. Wang, L., Zhang, J.H., Wang, Z.Q., Liu, C., Li, M., Qi, F.H., Guo, R.: Breather-to-soliton transitions, nonlinear wave interactions, and modulational instability in a higher-order generalized nonlinear Schrödinger equation. Phys. Rev. E. 93, 012214 (2016)

    Article  MathSciNet  Google Scholar 

  42. Ankiewicz, A., Kedziora, D.J., Chowdury, A., Bandelow, U., Akhmediev, N.: Infinite hierarchy of nonlinear Schrödinger equations and their solutions. Phys. Rev. E 93, 012206 (2016)

    Article  MathSciNet  Google Scholar 

  43. Agrawal, G.P.: Nonlinear Fiber Optics. Academic Press, New York (1995)

    MATH  Google Scholar 

  44. Chowdury, A., Kedziora, D.J., Ankiewicz, A., Akhmediev, N.: Breather-to-soliton conversions described by the quintic equation of the nonlinear Schrödinger hierarchy. Phys. Rev. E 91, 032928 (2015)

    Article  MathSciNet  Google Scholar 

  45. Chowdury, A., Ankiewicz, A., Akhmediev, N.: Moving breathers and breather-to-soliton conversions for the Hirota equation. Proc. R. Soc. A 471, 20150130 (2015)

    Article  MathSciNet  Google Scholar 

  46. Hirota, R.: Exact envelope-soliton solutions of a nonlinear wave equation. J. Math. Phys. 14, 805 (1973)

    Article  MathSciNet  Google Scholar 

  47. Hirota, R.: Exact Solution of the Korteweg–de Vries equation for multiple collisions of solitons. Phys. Rev. Lett. 27, 1192 (1971)

    Article  Google Scholar 

  48. Nimmo, J.J.C., Freeman, N.C.: The use of Bäcklund transformations in obtaining N-soliton solutions in Wronskian form. J. Phys. A 17, 1415 (1984)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work of Wenjun Liu was supported by the National Natural Science Foundation of China (Grant Nos. 11674036 and 11875008), by the Beijing Youth Top-notch Talent Support Program (Grant No. 2017000026833ZK08) and by the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications, Grant Nos. IPOC2016ZT04 and IPOC2017ZZ05). This work of Qin Zhou was supported by the National Natural Science Foundation of China (Grant Nos. 11705130 and 1157149), and this author was also sponsored by the Chutian Scholar Program of Hubei Government in China. The research work of Milivoj Belic was supported by Qatar National Research Fund (QNRF) under the Grant Number NPRP 8-028-1-001.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qin Zhou or Wenjun Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Triki, H., Zhou, Q. et al. Generation and control of multiple solitons under the influence of parameters. Nonlinear Dyn 95, 143–150 (2019). https://doi.org/10.1007/s11071-018-4556-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4556-8

Keywords

Navigation