Skip to main content
Log in

System identification of distributed parameter system with recurrent trajectory via deterministic learning and interpolation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In the paper, we propose a novel approach to identify distributed parameter system (DPS) with recurrent state trajectory. Different from existing literature, the system dynamics rather than parameters or structure of DPS is identified in the study. Due to the infinite-dimensional feature of DPS, the partial differential equation describing the DPS is first approximated by a set of ordinary differential equations. By employing finite difference method, the spatial derivatives at a set of spatial points are approximated. Then, the DPS dynamics at the set of spatial points is identified via deterministic learning. With the identification results, a mechanism based on interpolation method is proposed to approximate the DPS dynamics at any other spatial point. That is, we can accurately identify the DPS dynamics at any spatial point. Numerical results involving the identification of an important mathematical physics equation are presented to illustrate the validity of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ucinski, D.: Optimal Measurement Methods for Distributed Parameter System Identification. CRC Press, Boca Raton (2004)

    Book  MATH  Google Scholar 

  2. Schlacher, K., Schöberl, M.: Modelling, analysis and control of distributed parameter systems. Math. Comput. Model. Dyn. Syst. 17(1), 1–2 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Gonzalez-Garcia, R., Rico-Martinez, R., Wolf, W., Lubke, M., Eiswirth, M., Anderson, J.S., Kevrekidis, I.G.: Characterization of a two-parameter mixed-mode electrochemical behavior regime using neural networks. Phys. D Nonlinear Phenom. 151(1), 27–43 (2001)

    Article  MATH  Google Scholar 

  4. Krischer, K., Rico-Martinez, R., Kevrekidis, I., Rotermund, H., Ertl, G., Hudson, J.: Model identification of a spatiotemporally varying catalytic reaction. AIChE J. 39(1), 89–98 (1993)

    Article  Google Scholar 

  5. Li, H.X., Qi, C.: Modeling of distributed parameter systems for applications synthesized review from time–space separation. J Process Control 20(8), 891–901 (2010)

    Article  Google Scholar 

  6. Coca, D., Billings, S.A.: Direct parameter identification of distributed parameter systems. Int. J. Syst. Sci. 31(1), 11–17 (2000)

    Article  MATH  Google Scholar 

  7. Banks, H.T., Kunisch, K.: Estimation Techniques for Distributed Parameter Systems. Springer, Berlin (2012)

    MATH  Google Scholar 

  8. Guo, L., Billings, S.A., Coca, D.: Identification of partial differential equation models for a class of multiscale spatio-temporal dynamical systems. Int. J. Control 83(1), 40–48 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cheng, J., Nakagawa, J., Yamamoto, M., Yamazaki, T.: Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation. Inverse probl. 25(11), 115002 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Garvie, M.R., Trenchea, C.: Identification of space-time distributed parameters in the Gierer–Meinhardt reaction–diffusion system. SIAM J. Appl. Math. 74(1), 147–166 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Wang, Q., Feng, D., Cheng, D.: Parameter identification for a class of abstract nonlinear parabolic distributed parameter systems. Comput. Math. Appl. 48(12), 1847–1861 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fang, H., Wang, J., Feng, E., Li, Z.: Parameter identification and application of a distributed parameter coupled system with a movable inner boundary. Comput. Math. Appl. 62(11), 4015–4020 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Li, L., Liu, W., Han, B.: Dynamical level set method for parameter identification of nonlinear parabolic distributed parameter systems. Commun. Nonlinear Sci. Numer. Simul. 17(7), 2752–2765 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Li, H.X., Qi, C.: Spatio-Temporal Modeling of Nonlinear Distributed Parameter Systems: A Time/space Separation Based Approach, vol. 50. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  15. Gonzalez-Garcia, R., Rico-Martinez, R., Kevrekidis, I.: Identification of distributed parameter systems: a neural net based approach. Comput. Chem. Eng. 22, S965–S968 (1998)

    Article  Google Scholar 

  16. Guo, L., Billings, S.A.: Identification of partial differential equation models for continuous spatio-temporal dynamical systems. IEEE Trans. Circuits Syst. II Express Br. 53(8), 657–661 (2006)

    Article  Google Scholar 

  17. Li, H.X., Qi, C., Yu, Y.: A spatio-temporal volterra modeling approach for a class of distributed industrial processes. J. Process Control 19(7), 1126–1142 (2009)

    Article  Google Scholar 

  18. Rannacher, R., Vexler, B.: A priori error estimates for the finite element discretization of elliptic parameter identification problems with pointwise measurements. SIAM J. Control Optim. 44(5), 1844–1863 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wouwer, A.V., Renotte, C., Queinnec, I., Bogaerts, P.: Transient analysis of a wastewater treatment biofilter–distributed parameter modelling and state estimation. Math. Comput. Modell. Dyn. Syst. 12(5), 423–440 (2006)

    Article  MATH  Google Scholar 

  20. Orlov, Y., Bentsman, J.: Adaptive distributed parameter systems identification with enforceable identifiability conditions and reduced-order spatial differentiation. IEEE Trans. Autom. Control 45(2), 203–216 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chen, W., Wen, C., Hua, S., Sun, C.: Distributed cooperative adaptive identification and control for a group of continuous-time systems with a cooperative pe condition via consensus. IEEE Trans. Autom. Control 59(1), 91–106 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Chang, J.: Identification of variable coefficients for vibrating systems by boundary control and observation. J. Control Theory Appl. 6(2), 127–132 (2008)

    Article  MathSciNet  Google Scholar 

  23. Hong, K.S., Bentsman, J.: Direct adaptive control of parabolic systems: algorithm synthesis and convergence and stability analysis. IEEE Trans. Autom. Control 39(10), 2018–2033 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  24. Demetriou, M., Rosen, I.: On the persistence of excitation in the adaptive estimation of distributed parameter systems. IEEE Trans. Autom. Control 39(5), 1117–1123 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, C., Hill, D.J.: Learning from neural control. IEEE Trans. Neural Netw. 17(1), 130–146 (2006)

    Article  Google Scholar 

  26. Wang, C., Hill, D.J.: Deterministic learning and rapid dynamical pattern recognition. IEEE Trans. Neural Netw. 18(3), 617–630 (2007)

    Article  Google Scholar 

  27. Wang, C., Hill, D.J.: Deterministic Learning Theory for Identification, Recognition, and Control. CRC Press, Boca Raton (2009)

    Google Scholar 

  28. Shil’nikov, L.P.: Methods of Qualitative Theory in Nonlinear Dynamics, Part I, vol. 5. World Scientific, Singapore (2001)

    Book  Google Scholar 

  29. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory, vol. 112. Springer, Berlin (2013)

    Google Scholar 

  30. Ralston, A., Rabinowitz, P.: A First Course in Numerical Analysis. Courier Corporation, Chelmsford (2012)

    MATH  Google Scholar 

  31. Lam, N.S.N.: Spatial interpolation methods: a review. Am. Cartogr. 10(2), 129–150 (1983)

    Article  Google Scholar 

  32. Caruso, C., Quarta, F.: Interpolation methods comparison. Comput. Math. Appl. 35(12), 109–126 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  33. LeVeque, R.J.: Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems. SIAM, Philadelphia (2007)

    Book  MATH  Google Scholar 

  34. Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics, vol. 37. Springer, Berlin (2010)

    MATH  Google Scholar 

  35. Zhou, G., Wang, C.: Deterministic learning from control of nonlinear systems with disturbances. Prog. Nat. Sci. 19(8), 1011–1019 (2009)

    Article  MathSciNet  Google Scholar 

  36. Hohmann, A., Deuflhard, P.: Numerical Analysis in Modern Scientific Computing: An Introduction, vol. 43. Springer, Berlin (2012)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xunde Dong.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

This work was supported in part by the PhD Start-up Fund of Natural Science Foundation of Guangdong Province, China (Nos.: 2017A030310493, 2018A030310367), in part by the Fundamental Research Funds for the Central Universities (No.: 2018A030310367), in part by the National Major Scientific Instruments Development Project (No.: 61527811), in part by the Science and Technology Program of Guangzhou, China (No.: 201704020078).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, X., Wang, C., Yang, Q. et al. System identification of distributed parameter system with recurrent trajectory via deterministic learning and interpolation. Nonlinear Dyn 95, 73–86 (2019). https://doi.org/10.1007/s11071-018-4551-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4551-0

Keywords

Navigation