Nonlinear Dynamics

, Volume 94, Issue 4, pp 2879–2887 | Cite as

Autonomous memristor chaotic systems of infinite chaotic attractors and circuitry realization

  • Junwei Sun
  • Xingtong Zhao
  • Jie Fang
  • Yanfeng WangEmail author
Original Paper


Memristor chaotic system has been attracted by many researchers because of the rich dynamical behaviors. However, some existed memristor chaotic systems have finite numbers of chaotic attractors. In this paper, a simple, effective method is given for designing the autonomous memristor chaotic systems of infinite chaotic attractors. Autonomous memristor chaotic systems are proposed from the start of memristor chaotic system counterparts. Three-dimensional, four-dimensional, and five-dimensional memristor chaotic systems are given in standard form with sine functions and tangent functions to prove the effectiveness of this method. Eventually, an analog circuit of three-dimensional memristor chaotic system is designed and implemented to prove its feasibility.


Autonomous memristor system Chaotic attractor Memristor chaotic system 



The work is supported by the State Key Program of National Natural Science of China (Grant No. 61632002), the National Key R and D Program of China for International S and T Cooperation Projects (No. 2017YFE0103900), the National Natural Science of China (Grant Nos. 61603348, 61775198, 61603347, 61572446, 61472372), Science and Technology Innovation Talents Henan Province (Grant No. 174200510012), Research Program of Henan Province (Grant Nos. 172102210066, 17A120005, 182102210160), Youth Talent Lifting Project of Henan Province and the Science Foundation of for Doctorate Research of Zhengzhou University of Light Industry (Grant No. 2014BSJJ044).


  1. 1.
    Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 453, 80–83 (2008)CrossRefGoogle Scholar
  2. 2.
    Xiao, Q., Huang, Z., Zeng, Z.: Passivity analysis for memristor-based inertial neural networks with discrete and distributed delays. IEEE Trans. Syst. Man Cybern. Syst. (2017). CrossRefGoogle Scholar
  3. 3.
    Sun, J., Shen, Y.: Quasi-ideal memory system. IEEE Trans. Cybern. 45, 1353–1362 (2015)CrossRefGoogle Scholar
  4. 4.
    Zhang, B., Deng, F.: Double-compound synchronization of six memristor-based Lorenz systems. Nonlinear Dyn. 77, 1519–1530 (2014)CrossRefGoogle Scholar
  5. 5.
    Volos, C., Vaidyanathan, S., Pham, V.T., Nistazakis, H.E., Stouboulos, I.N., Kyprianidis, I.M., Tombras, G.S.: Adaptive control and synchronization of a memristor-based Shinriki’s system. In: Advances in Memristors, Memristive Devices and Systems, 701, 237–261. Springer, Berlin (2017)Google Scholar
  6. 6.
    Kengne, J., Negou, A.N., Tchiotsop, D.: Antimonotonicity, chaos and multiple attractors in a novel autonomous memristor-based jerk circuit. Nonlinear Dyn. (2017). CrossRefzbMATHGoogle Scholar
  7. 7.
    Sabarathinam, S., Volos, C.K., Thamilmaran, K.: Implementation and study of the nonlinear dynamics of a memristor-based Duffing oscillator. Nonlinear Dyn. 87, 37–49 (2017)CrossRefGoogle Scholar
  8. 8.
    Wen, S., Huang, T., Yu, X., Chen, M., Zeng, Z.: Aperiodic sampled-data sliding-mode control of fuzzy systems with communication delays via the event-triggered method. IEEE Trans. Fuzzy Syst. 24, 1048–1057 (2016)CrossRefGoogle Scholar
  9. 9.
    Muthuswamy, B., Chua, L.O.: Simplest chaotic circuit. Int. J. Bifurcat. Chaos 20, 1567–1580 (2010)CrossRefGoogle Scholar
  10. 10.
    Zhang, X.: Regular nonchaotic attractors with positive plural. Int. J. Bifurcat. Chaos 26, 1650241 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Pham, V.T., Jafari, S., Volos, C., Kapitaniak, T.: Different families of hidden attractors in a new chaotic system with variable equilibrium. Int. J. Bifurcat. Chaos 27, 1750138 (2017)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Pham, V.T., Wang, X., Jafari, S., Volos, C., Kapitaniak, T.: From Wang–Chen system with only one stable equilibrium to a new chaotic system without equilibrium. Int. J. Bifurcat. Chaos 27, 1750097 (2017)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Nazarimehr, F., Saedi, B., Jafari, S., Sprott, J.C.: Are perpetual points sufficient for locating hidden attractors? Int. J. Bifurcat. Chaos 27, 1750037 (2017)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)CrossRefGoogle Scholar
  15. 15.
    Jackson, E.A.: OPCL migration controls between five attractors of the Chua system. Int. J. Bifurcat. Chaos 5, 1255–1260 (1995)CrossRefGoogle Scholar
  16. 16.
    Dudkowski, D., Jafari, S., Kapitaniak, T., Kuznetsov, N.V., Leonov, G.A., Prasad, A.: Hidden attractors in dynamical systems. Phys. Rep. 637, 1–50 (2016)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Bao, B., Jiang, T., Xu, Q., Chen, M., Wu, H., Hu, Y.: Coexisting infinitely many attractors in active band-pass filter-based memristive circuit. Nonlinear Dyn. 86, 1711–1723 (2016)CrossRefGoogle Scholar
  18. 18.
    Bao, B., Hu, A., Bao, H., Xu, Q., Chen, M., Wu, H.: Three-dimensional memristive Hindmarsh–Rose neuron model with hidden coexisting asymmetric behaviors. Complexity 2018, 3872573 (2018)Google Scholar
  19. 19.
    Bao, B., Bao, H., Wang, N., Chen, M., Xu, Q.: Hidden extreme multistability in memristive hyperchaotic system. Chaos Solitons Fractals 94, 102–111 (2017)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Bao, B., Jiang, T., Wang, G., Jin, P., Bao, H., Chen, M.: Two-memristor-based Chua’s hyperchaotic circuit with plane equilibrium and its extreme multistability. Nonlinear Dyn. 89, 1157–1171 (2017)CrossRefGoogle Scholar
  21. 21.
    Bao, H., Wang, N., Bao, B., Chen, M., Jin, P., Wang, G.: Initial condition-dependent dynamics and transient period in memristor-based hypogenetic jerk system with four line equilibria. Commun. Nonlinear Sci. Numer. Simul. 57, 264–275 (2018)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Chen, M., Sun, M., Bao, B., Wu, H., Xu, Q., Wang, J.: Controlling extreme multistability of memristor emulator-based dynamical circuit in flux-charge domain. Nonlinear Dyn. 91, 1395–1412 (2018)CrossRefGoogle Scholar
  23. 23.
    Chen, X., Park, J.H., Cao, J., Qiu, J.L.: Sliding mode synchronization of multiple chaotic systems with uncertainties and disturbances. App. Math. Comput. 308, 161–173 (2017)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Chen, X., Park, J.H., Cao, J., Qiu, J.L.: Adaptive synchronization of multiple uncertain coupled chaotic systems via sliding mode control. Neurocomputing 273, 9–21 (2018)CrossRefGoogle Scholar
  25. 25.
    Bao, B., Wu, P., Bao, H., Xu, Q., Chen, M.: Numerical and experimental confirmations of quasi-periodic behavior and chaotic bursting in third-order autonomous memristive oscillator. Chaos Solitons Fractals 106, 161–170 (2018)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Ma, J., Sun, D., Pu, H.: Model improvement for predicting moisture content in pork longissimus dorsi muscles under diverse processing conditions by hyperspectral imaging. J. Food Eng. 196, 65–72 (2017)CrossRefGoogle Scholar
  27. 27.
    Pisarchik, A.N., Feudel, U.: Control of multistability. Phys. Rep. 540, 167–218 (2014)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Li, D., Lu, J., Wu, X., Chen, G.: Estimating the ultimate bound and positively invariant set for the Lorenz system and a unified chaotic system. J. Math. Ana. Appl. 323, 844–853 (2006)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Liao, X.: On the global basin of attraction and positively invariant set for the Lorenz chaotic system and its application in chaos control and synchronization. Sci. China Ser. E 34, 1404–1419 (2004)Google Scholar
  30. 30.
    Bao, B., Liu, Z., Xu, J.: Dynamical analysis of memristor chaotic oscillator. Acta Phys. Sin 59, 3785–3793 (2010). (in Chinese)Google Scholar
  31. 31.
    Bao, B., Wang, Q., Xu, J., (in Chinese): On memristor based five-order chaotic circuit. J. Circuits Syst. 16, 66–69 (2011)Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Junwei Sun
    • 1
    • 2
  • Xingtong Zhao
    • 1
    • 2
  • Jie Fang
    • 1
    • 2
  • Yanfeng Wang
    • 1
    • 2
    Email author
  1. 1.College of Electronic and Information EngineeringZhengzhou University of Light IndustryZhengzhouChina
  2. 2.Henan Key Lab of Information-based Electrical AppliancesZhengzhou University of Light IndustryZhengzhouChina

Personalised recommendations