Advertisement

Multiple coexisting attractors of the serial–parallel memristor-based chaotic system and its adaptive generalized synchronization

  • Chuang Li
  • Fuhong Min
  • Chunbiao Li
Original Paper
  • 62 Downloads

Abstract

The nonlinear circuit with serial–parallel memristors shows special internal characteristics and external performance, which indicates that the serial–parallel memristors can greatly change the dynamic characteristics of the nonlinear system. Mathematical model of the system is established to analyze the influence of the serial–parallel memristors on the dynamical behaviors with the change of system parameters, and then the basin of attraction is used to exhibit the coexisting multiple attractors with different initial conditions and the serial–parallel memristors, which can reveal that the serial–parallel flux-controlled or charge-controlled memristors have different effects on the generation of chaos and multistability phenomenon. Moreover, the hardware description of memristor-based system through FPGA is realized by Verilog language and the experimental results are observed from digital oscilloscope. Finally, based on the Lyapunov stability theory and adaptive control law, a nonlinear controller is designed to achieve the adaptive generalized synchronization between five memristor-based chaotic systems, and numerical results of the adaptive generalized synchronization are presented to prove the correctness and effectiveness of the proposed method.

Keywords

Serial–parallel memristor Memristive system Basin of attraction Adaptive generalized synchronization 

Notes

Acknowledgements

This work is supported by the National Nature Science Foundation of China under Grant No. 61871230, the Natural Science Foundations of Jiangsu Province under Grant No. BK2018021196 and the Postgraduate Research and Practice Innovation Program of Jiangsu Province of China under Grant No. KYCX18_1220.

References

  1. 1.
    Strukov, D.B., Snider, G.S., Stewart, D.R.: The missing memristor found. Nature 453(7191), 80–83 (2018)CrossRefGoogle Scholar
  2. 2.
    Chua, L.O.: Memristor-the missing circuit element. IEEE Trans Circuit Theory 18(5), 507–519 (1971)CrossRefGoogle Scholar
  3. 3.
    Chen, C., Li, L., Peng, H.: Adaptive synchronization of memristor-based BAM neural networks with mixed delays. Appl. Math. Comput. 322, 100–110 (2018)MathSciNetGoogle Scholar
  4. 4.
    Borghetti, J., Snider, G.S., Kuekes, P.J.: ‘Memristive’ switches enable ‘stateful’ logic operations via material implication. Nature 464(7290), 873–876 (2010)CrossRefGoogle Scholar
  5. 5.
    Ruan, J.Y., Sun, K.H., Mou, J.: Fractional-order simplest memristor-based chaotic circuit with new derivative. Eur. Phys. J. Plus 133(1), 11828 (2018)CrossRefGoogle Scholar
  6. 6.
    Wang, C.H., Liu, X.M., Xia, H.: Multi-piecewise quadratic nonlinearity memristor and its 2N-scroll and 2N+1-scroll chaotic attractors system. Chaos 27(3), 033114 (2017)CrossRefzbMATHGoogle Scholar
  7. 7.
    Xu, Q., Lin, Y., Bao, B.: Multiple attractors in a non-ideal active voltage-controlled memristor based Chua’s circuit. Chaos Solitons Fractals 83, 186–200 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bao, B.C., Xu, Q., Bao, H.: Extreme multistability in a memristive circuit. Electron. Lett. 52(12), 1008–1010 (2016)CrossRefGoogle Scholar
  9. 9.
    Peng, G.Y., Min, F.H.: Multistability analysis, circuit implementations and application in image encryption of a novel memristive chaotic circuit. Nonlinear Dyn. 90(3), 1607–1625 (2017)CrossRefGoogle Scholar
  10. 10.
    Kengne, J., Negou, A.N., Tchiotsop, D.: Antimonotonicity, chaos and multiple attractors in a novel autonomous memristor-based jerk circuit. Nonlinear Dyn. 27(7), 1–20 (2017)Google Scholar
  11. 11.
    Njitacke, Z.T., Kengne, J., Kengne, L.K.: Antimonotonicity, chaos and multiple coexisting attractors in a simple hybrid diode-based jerk circuit. Chaos Solitons Fractals 105, 77–91 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Bao, H., Wang, N., Bao, B.C.: Initial condition-dependent dynamics and transient period in memristor-based hypogenetic jerk system with four line equilibria. Commun. Nonlinear Sci. Numer. Simul. 57, 264–275 (2018)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Bao, B.C., Jiang, T., Wang, G.Y., et al.: Two-memristor-based Chua’s hyperchaotic circuit with plane equilibrium and its extreme multistability. Nonlinear Dyn. 89, 1157–1171 (2017)CrossRefGoogle Scholar
  14. 14.
    Wang, W., Zeng, Y.C., Sun, R.T.: Research on a six-order chaotic circuit with three memristors. Acta Phys. Sin. 66(4), 040502 (2017)Google Scholar
  15. 15.
    Bao, B.C., Jiang, T., Xu, Q.: Coexisting infinitely many attractors in active band-pass filter-based memristive circuit. Nonlinear Dyn. 86(3), 1711–1723 (2016)CrossRefGoogle Scholar
  16. 16.
    Bao, B.C., Bao, H., Wang, N.: Hidden extreme multistability in memristive hyperchaotic system. Chaos Solitons Fractals 94, 102–111 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Yuan, F., Wang, G., Wang, X.: Extreme multistability in a memristor-based multi-scroll hyper-chaotic system. Chaos 26(7), 507–519 (2016)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Li, C., Min, F.H., Jin, Q.S.: Extreme multistability analysis of memristor-based chaotic system and its application in image decryption. AIP Adv. 7(12), 125204 (2017)CrossRefGoogle Scholar
  19. 19.
    Li, C.B., Sprott, J.C., Xing, H.Y.: Constructing chaotic systems with conditional symmetry. Nonlinear Dyn. 87, 1351–1358 (2016)CrossRefzbMATHGoogle Scholar
  20. 20.
    Bao, H., Jiang, T., Chu, KB., et al. Memristor-based canonical chua’s circuit: extreme multi-stability in voltage–current domain and its controllability in flux-charge domain. Complexity, Article ID: 5935637(2018)Google Scholar
  21. 21.
    Pecora, L.M., Carroll, T.L.: Synchronization in chaotic system. Phys. Rev. Lett. 64(8), 821–824 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Min, F.H., Luo Albert, C.J.: Sinusoidal synchronization of a Duffing oscillator with a chaotic pendulum. Phys. Lett. A 375(34), 3080–3089 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Kocamaz, U.E., Çiçek, S., Uyaroğlu, Y.: Secure communication with chaos and electronic circuit design using passivity-based synchronization. J. Circuits Syst. Comput. 27(4), 1850057 (2017)CrossRefGoogle Scholar
  24. 24.
    Chen, X., Ju, H.P., Cao, J.D., et al.: Adaptive synchronization of multiple uncertain coupled chaotic systems via sliding mode control. Neurocomputing 273, 9–21 (2017)CrossRefGoogle Scholar
  25. 25.
    Yang, H.L., Wang, X., Zhong, S.M.: Synchronization of nonlinear complex dynamical systems via delayed impulsive distributed control. Appl. Math. Comput. 320, 75–85 (2018)MathSciNetGoogle Scholar
  26. 26.
    Min, F.H., Luo Albert, C.J.: Complex dynamics of projective synchronization of Chua circuit with different scroll. Int. J. Bifurcat. Chaos 25(5), 1530016 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Chen, M., Sun, M.X., Bao, B.C., et al.: Controlling extreme multistability of memristor emulator-based dynamical circuit in flux-charge domain. Nonlinear Dyn. 91(2), 1395–1412 (2018)CrossRefGoogle Scholar
  28. 28.
    Wang, S.B., Wang, X.Y., Zhou, Y.F., et al.: A memristor-based hyperchaotic complex Lü system and its adaptive complex generalized synchronization. Entropy 18(2), 0058–0072 (2016)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Kim, H., Sah, M.P., Yang, C.J.: Memristor emulator for memristor circuit applications. IEEE Trans. Circuits Syst. I Regul. Pap. 59(10), 2422–2431 (2012)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Budhathoki, R.K., Sah, M.P., Adhikari, S.P.: Composite behavior of multiple memristor circuits. IEEE Trans. Circuits Syst. I Regul. Pap. 60(10), 2688–2700 (2013)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Adhikari, S.P., Sah, M.P., Kim, H.: Three fingerprints of memristor. IEEE Trans. Circuits Syst. I Regul. Pap. 60(11), 3008–3021 (2013)CrossRefGoogle Scholar
  32. 32.
    Wu, F.Q., Ma, J., Ren, G.D.: Synchronization stability between initial-dependent oscillators with periodical and chaotic oscillation. J. Zhejiang Univ. Sci. A 19, 1800334 (2018)Google Scholar
  33. 33.
    Wu, F.Q., Zhou, P., Alsaedi, A.: Synchronization dependence on initial setting of chaotic systems without equilibria. Chaos Solitons Fractals 110, 124–132 (2018)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.School of Electrical and Automation EngineeringNanjing Normal UniversityNanjingChina
  2. 2.School of Electronic and Information EngineeringNanjing University of Information Science and TechnologyNanjingChina

Personalised recommendations