Skip to main content

Advertisement

Log in

Energy harvesting in a Mathieu–van der Pol–Duffing MEMS device using time delay

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper investigates quasi-periodic vibration-based energy harvesting in a delayed nonlinear MEMS device consisting of a delayed Mathieu–van der Pol–Duffing type oscillator coupled to a delayed piezoelectric coupling mechanism. We use the multiple scales method to approximate the quasi-periodic response and the related power output near the principal parametric resonance. The effect of time delay on the energy harvesting performance is studied. It is shown that for appropriate combination of time delay parameters, there exists an optimum range of excitation frequency beyond the resonance where quasi-periodic vibration-based energy harvesting is maximum. Numerical simulations are performed to confirm the analytical predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Cook-Chennault, K.A., Thambi, N., Sastry, A.M.: Powering MEMS portable devices-a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems. Smart Mater. Struct. 17, 043001 (2008)

    Article  Google Scholar 

  2. Pandey, M., Rand, R., Zehnder, A.: Perturbation analysis of entrainment in a micromechanical limit cycle oscillator. Commun. Nonlinear Sci. Numer. Simulat. 12, 1291–1301 (2007)

    Article  Google Scholar 

  3. Belhaq, M., Fahsi, A.: 2:1 and 1:1 frequency-locking in fast excited van der Pol–Mathieu–Duffing oscillator. Nonlinear Dyn. 53, 139–152 (2008)

    Article  MathSciNet  Google Scholar 

  4. Pandey, M., Aubin, K., Zalalutdinov, M., Zehnder, A., Rand, R.: Analysis of frequency locking optically driven MEMS resonators. IEEE J. Microelectromech. Syst. 15, 1546–1554 (2005)

    Article  Google Scholar 

  5. Aubin, K.L., Pandey, M., Zehnder, A.T., Rand, R.H., Craighead, H.G., Zalalutdinov, M., Parpia, J.M.: Frequency entrainment for micromechanical oscillator. Appl. Phys. Lett. 83, 3281–3283 (2003)

    Article  Google Scholar 

  6. Aubin, K., Zalalutdinov, M., Alan, T., Reichenbach, R., Rand, R., Zehnder, A., Parpia, J., Craighead, H.: Limit cycle oscillations in CW laser driven NEMS. IEEE/ASME J. Micromech. Syst. 13, 1018–1026 (2004)

    Article  Google Scholar 

  7. Szabelski, K., Warminski, J.: Self excited system vibrations with parametric and external excitations. J. Sound Vib. 187, 595–607 (1995)

    Article  Google Scholar 

  8. Fahsi, A., Belhaq, M.: Effect of fast harmonic excitation on frequency-locking in a van der Pol–Mathieu–Duffing oscillator. Commun. Nonlinear Sci. Numer. Simulat. 14, 244–253 (2009)

    Article  Google Scholar 

  9. Pandey, M., Rand, R., Zehnder, A.: Frequency locking in a forced Mathieu–van der Pol–Duffing system. Nonlinear Dyn. 54, 3–12 (2008)

    Article  MathSciNet  Google Scholar 

  10. Abdelkefi, A., Nayfeh, A.H., Hajj, M.R.: Design of piezoaeroelastic energy harvesters. Nonlinear Dyn. 68, 519–530 (2012)

    Article  Google Scholar 

  11. Bibo, A., Daqaq, M.F.: Energy harvesting under combined aerodynamic and base excitations. J. Sound Vib. 332, 5086–5102 (2013)

    Article  Google Scholar 

  12. Hamdi, M., Belhaq, M.: Quasi-periodic vibrations in a delayed van der Pol oscillator with time-periodic delay amplitude. J. Vib. Control (2015). https://doi.org/10.1177/1077546315597821

    Article  MathSciNet  Google Scholar 

  13. Warminski, J.: Frequency locking in a nonlinear MEMS oscillator driven by harmonic force and time delay. Int. J. Dynam. Control. 3, 122–136 (2015)

    Article  MathSciNet  Google Scholar 

  14. Kirrou, I., Belhaq, M.: On the quasi-periodic response in the delayed forced Duffing oscillator. Nonlinear Dyn. 84, 2069–2078 (2016)

    Article  MathSciNet  Google Scholar 

  15. Belhaq, M., Hamdi, M.: Energy harvesting from quasi-periodic vibrations. Nonlinear Dyn. 86, 2193–2205 (2016)

    Article  Google Scholar 

  16. Ghouli, Z., Hamdi, M., Lakrad, F., Belhaq, M.: Quasiperiodic energy harvesting in a forced and delayed Duffing harvester device. J. Sound Vib. 407, 271–285 (2017)

    Article  Google Scholar 

  17. Ghouli, Z., Hamdi, M., Belhaq, M.: Energy harvesting from quasi-periodic vibrations using electromagnetic coupling with delay. Nonlinear Dyn. 89, 1625–1636 (2017)

    Article  Google Scholar 

  18. Erturk, A., Inman, D.J.: On mechanical modeling of cantilevered piezoelectric vibration energy harvesters. J. Intell. Mater. Syst. Struct. 19, 1311–1325 (2008)

    Article  Google Scholar 

  19. Erturk, A., Inman, D.J.: An experimentally validated bimorph c antilever model for piezoelectric energy harvesting from base excitations. Smart Mater. Struct. 18, 025009 (2009)

    Article  Google Scholar 

  20. Abdelkefi, A., Nayfeh, A.H., Hajj, M.R.: Modeling and analysis of piezoaerolastic energy harvesters. Nonlinear Dyn. 67, 925–939 (2011)

    Article  Google Scholar 

  21. Hamdi, M., Belhaq, M.: Quasi-periodic oscillation envelopes and frequency locking in excited nonlinear systems with time delay. Nonlinear Dyn. 73, 1–15 (2013)

    Article  Google Scholar 

  22. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)

    MATH  Google Scholar 

  23. Belhaq, M., Houssni, M.: Quasi-periodic oscillations, chaos and suppression of chaos in a nonlinear oscillator driven by parametric and external excitations. Nonlinear Dyn. 18, 1–24 (1999)

    Article  MathSciNet  Google Scholar 

  24. Shampine, L.F., Thompson, S.: Solving delay differential equations with dde23. http://www.radford.edu/~thompson/webddes/tutorial.pdf. Accessed 23 Mar 2000 (2000)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Belhaq.

Appendix

Appendix

$$\begin{aligned} S_{1}= & {} \frac{\alpha }{2}-\frac{\chi \kappa (2\lambda -2\alpha _{2}\cos (\frac{\omega \tau _{2}}{2}))}{(2\lambda -2\alpha _{2}\cos (\frac{\omega \tau _{2}}{2}))^{2}+(\omega +2\alpha _{2}\sin (\frac{\omega \tau }{2}))^{2}}\nonumber \\&-\frac{\alpha _{1}}{\omega }\sin \left( \frac{\omega \tau _{1}}{2}\right) ,~~~~S_{2}=\frac{-\beta }{8}, ~~~~S_{3}=-\frac{h}{2\omega }\\ S_{4}= & {} \frac{\sigma }{\omega }+\frac{\chi \kappa (\omega +2\alpha _{2}\sin (\frac{\omega \tau _{2}}{2}))}{(2\lambda -2\alpha _{2}\cos (\frac{\omega \tau _{2}}{2}))^{2}+(\omega +2\alpha _{2}\sin (\frac{\omega \tau _{2}}{2}))^{2}}\nonumber \\&-\frac{\alpha _{1}}{\omega }\cos \left( \frac{\omega \tau _{1}}{2}\right) ,~~~~S_{5}=\frac{3\gamma }{4\omega }\ \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belhaq, M., Ghouli, Z. & Hamdi, M. Energy harvesting in a Mathieu–van der Pol–Duffing MEMS device using time delay. Nonlinear Dyn 94, 2537–2546 (2018). https://doi.org/10.1007/s11071-018-4508-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4508-3

Keywords

Navigation