Skip to main content
Log in

Neimark–Sacker bifurcation and chaos control in discrete-time predator–prey model with parasites

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we discuss the qualitative behavior of a four-dimensional discrete-time predator–prey model with parasites. We investigate existence and uniqueness of positive steady state and find parametric conditions for local asymptotic stability of positive equilibrium point of given system. It is also proved that the system undergoes Neimark–Sacker bifurcation (NSB) at positive equilibrium point with the help of an explicit criterion for NSB. The system shows chaotic dynamics at increasing values of bifurcation parameter. Chaos control is also discussed through implementation of hybrid control strategy, which is based on feedback control methodology and parameter perturbation. Finally, numerical simulations are conducted to illustrate theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lafferty, K.D.: Parasites in marine food webs. Bull. Mar. Sci. 89(1), 123–134 (2013)

    Article  Google Scholar 

  2. Packer, C., Holt, R.D., Hudson, P.J., Lafferty, K.D., Dobson, A.P.: Keeping the herds healthy and alert: implications of predator control for infectious disease. Ecol. Lett. 6, 792–802 (2003)

    Article  Google Scholar 

  3. Libersat, F., Delago, A., Gal, R.: Manipulation of host behavior by parasitic insects and insect parasites. Annu. Rev. Entomol. 54, 189–207 (2009)

    Article  Google Scholar 

  4. Sato, T., et al.: Nematomorph parasites indirectly alter the food web and ecosystem function of streams through behavioural manipulation of their cricket hosts. Ecol. Lett. 15, 786–793 (2012)

    Article  Google Scholar 

  5. Lafferty, K.D., Dobson, A.P., Kuris, A.M.: Parasites dominate food web links. Proc. Natl. Acad. Sci. USA 103, 11211–11216 (2006)

    Article  Google Scholar 

  6. Keeling, M.J., Bjørnstad, O.N., Grenfell, B.T.: Metapopulation dynamics of infectious diseases. In: Ecology, Genetics and Evolution of Metapopulations, pp. 415–445 (2004)

    Chapter  Google Scholar 

  7. Lafferty, K.D., Morris, A.K.: Altered behaviour of parasitized killfish increases susceptibility to predation by bird final hosts. Ecology 77, 1390–1397 (1996)

    Article  Google Scholar 

  8. Bairagi, N., Roy, P.K., Chattopadhyay, J.: Role of infection on the stability of a predator–prey system with several response functions: a comparative study. J. Theor. Biol. 248, 10–25 (2007)

    Article  MathSciNet  Google Scholar 

  9. Din, Q.: Global behavior of a host-parasitoid model under the constant refuge effect. Appl. Math. Model. 40(4), 2815–2826 (2016)

    Article  MathSciNet  Google Scholar 

  10. Din, Q., Khan, M.A., Saeed, U.: Qualitative behaviour of generalised Beddington model. Z. Naturforsch. A 71(2), 145–155 (2016)

    Article  Google Scholar 

  11. Din, Q., Gümüş, Ö.A., Khalil, H.: Neimark–Sacker bifurcation and chaotic behaviour of a modified host-parasitoid model. Z. Naturforsch. A 72(1), 25–37 (2017)

    Article  Google Scholar 

  12. Din, Q.: Global stability of Beddington model. Qual. Theor. Dyn. Syst. 16(2), 391–415 (2017)

    Article  MathSciNet  Google Scholar 

  13. Din, Q.: Global stability and Neimark–Sacker bifurcation of a host–parasitoid model. Int. J. Syst. Sci. 48(6), 1194–1202 (2017)

    Article  MathSciNet  Google Scholar 

  14. Hudson, P.J., Dobson, A., Newborn, D.: Prevention of population cycles by parasite removal. Science 282, 2256–2258 (1998)

    Article  Google Scholar 

  15. Fenton, A., Rands, S.A.: The impact of parasite manipulation and predator foraging behavior on predator–prey communities. Ecology 87, 2832–2841 (2006)

    Article  Google Scholar 

  16. Jang, S.R.-J., Baglama, J.: Continuous-time predator–prey models with parasites. J. Biol. Dyn. 3(1), 87–98 (2009)

    Article  MathSciNet  Google Scholar 

  17. Ahmad, S.: On the nonautonomous Lotka–Volterra competition equation. Proc. Am. Math. Soc. 117, 199–204 (1993)

    Article  Google Scholar 

  18. Tang, X., Zou, X.: On positive periodic solutions of Lotka–Volterra competition systems with deviating arguments. Proc. Am. Math. Soc. 134, 2967–2974 (2006)

    Article  MathSciNet  Google Scholar 

  19. Zhou, Z., Zou, X.: Stable periodic solutions in a discrete periodic logistic equation. Appl. Math. Lett. 16(2), 165–171 (2003)

    Article  MathSciNet  Google Scholar 

  20. Liu, X.: A note on the existence of periodic solution in discrete predator–prey models. Appl. Math. Model. 34, 2477–2483 (2010)

    Article  MathSciNet  Google Scholar 

  21. Freedman, H.I.: Deterministic Mathematical Models in Population Ecology. Marcel Dekker, New York (1980)

    MATH  Google Scholar 

  22. Goh, B.S.: Management and Analysis of Biological Populations. Elsevier Scientific, Amsterdam (1980)

    Google Scholar 

  23. Din, Q.: Neimark–Sacker bifurcation and chaos control in Hassell–Varley model. J. Differ. Equ. Appl. 23, 741–762 (2017)

    Article  MathSciNet  Google Scholar 

  24. He, Z., Lai, X.: Bifurcation and chaotic behavior of a discrete-time predator–prey system. Nonlinear Anal. Real World Appl. 12, 403–417 (2011)

    Article  MathSciNet  Google Scholar 

  25. Din, Q., Elsadany, A.A., Khalil, H.: Neimark–Sacker bifurcation and chaos control in a fractional-order plant-herbivore model. Discrete Dyn. Nat. Soc. Article ID 6312964, 1–15 (2017)

    MATH  Google Scholar 

  26. Curtiss, D.R.: Recent extensions of Descartes’ rule of signs. Ann. Math. 19(4), 251–278 (1918)

    Article  MathSciNet  Google Scholar 

  27. Grove, E.A., Ladas, G.: Periodicities in Nonlinear Difference Equations. Chapman and Hall/CRC Press, Boca Raton (2004)

    Book  Google Scholar 

  28. Wen, G.: Criterion to identify Hopf bifurcations in maps of arbitrary dimension. Phys. Rev. E 72, Article ID 026201, 4 pages (2005)

  29. Lynch, S.: Dynamical Systems with Applications Using Mathematica. Birkhauser, Boston (2007)

    MATH  Google Scholar 

  30. Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64(11), 1196–1199 (1990)

    Article  MathSciNet  Google Scholar 

  31. Romeiras, F.J., Grebogi, C., Ott, E., Dayawansa, W.P.: Controlling chaotic dynamical systems. Phys. D 58, 165–192 (1992)

    Article  MathSciNet  Google Scholar 

  32. Luo, X.S., Chen, G.R., Wang, B.H.: Hybrid control of period-doubling bifurcation and chaos in discrete nonlinear dynamical systems. Chaos Soliton Fract. 18, 775–783 (2003)

    Article  Google Scholar 

  33. Din, Q.: Bifurcation analysis and chaos control in discrete-time glycolysis models. J. Math. Chem. 56(3), 904–931 (2018)

    Article  MathSciNet  Google Scholar 

  34. Din, Q., Donchev, T., Kolev, D.: Stability, bifurcation analysis and chaos control in chlorine dioxide–iodine–malonic acid reaction. MATCH Commun. Math. Comput. Chem. 79(3), 577–606 (2018)

    MathSciNet  Google Scholar 

  35. Din, Q.: Controlling chaos in a discrete-time prey–predator model with Allee effects. Int. J. Dyn. Control 6(2), 858–872 (2018)

    Article  MathSciNet  Google Scholar 

  36. Din, Q.: Qualitative analysis and chaos control in a density-dependent host–parasitoid system. Int. J. Dyn. Control 6(2), 778–798 (2018)

    Article  MathSciNet  Google Scholar 

  37. Din, Q., Elsadany, A.A., Ibrahim, S.: Bifurcation analysis and chaos control in a second-order rational difference equation. Int. J. Nonlinear Sci. Numer. Simul. 19(1), 53–68 (2018)

    Article  MathSciNet  Google Scholar 

  38. Din, Q., Hussain, M.: Controlling chaos and Neimark–Sacker bifurcation in a host-parasitoid model. Asain J. Control (2018). https://doi.org/10.1002/asjc.1809

  39. Din, Q.: Complexity and chaos control in a discrete-time prey–predator model. Commun. Nonlinear Sci. Numer. Simul. 49, 113–134 (2017)

    Article  MathSciNet  Google Scholar 

  40. Din, Q., Saeed, U.: Bifurcation analysis and chaos control in a host–parasitoid model. Math. Methods Appl. Sci. 40(14), 5391–5406 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous referees for their valuable comments and suggestions leading to improvement of this paper.

Funding

Funding will be provided by School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), Islamabad, Pakistan, for the publication of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irfan Ali.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest. They have no competing financial, professional, or personal interests that might have influenced the performance of the work described in this manuscript.

Additional information

This work is supported by Department of Mathematics, School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), Islamabad, Pakistan. The corresponding School will help financially for the publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saeed, U., Ali, I. & Din, Q. Neimark–Sacker bifurcation and chaos control in discrete-time predator–prey model with parasites. Nonlinear Dyn 94, 2527–2536 (2018). https://doi.org/10.1007/s11071-018-4507-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4507-4

Keywords

Navigation