Multistability in a three-dimensional oscillator: tori, resonant cycles and chaos

Abstract

The emergence of multistability in a simple three-dimensional autonomous oscillator is investigated using numerical simulations, calculations of Lyapunov exponents and bifurcation analysis over a broad area of two-dimensional plane of control parameters. Using Neimark–Sacker bifurcation of 1:1 limit cycle as the starting regime, many parameter islands with the coexisting attractors were detected in the phase diagram, including the coexistence of torus, resonant limit cycles and chaos; and transitions between the regimes were considered in detail. The overlapping between resonant limit cycles of different winding numbers, torus and chaos forms the multistability.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Notes

  1. 1.

    Here and further we use symbol: \(y=\dot{x}\).

  2. 2.

    Chart of dynamic regimes was constructed in the same way as the chart of Lyapunov exponents, except that for each point of the parameter plane the period of oscillations was determined by the number of fixed points in the Poincaré section by plane \(y=0\).

  3. 3.

    If we consider the bifurcation tree we cannot distinguish between quasiperiodic and chaotic oscillations, but using the charts of Lyapunov exponents in Fig. 2, we can see that for mentioned parameters there are quaisperiodic oscillations with two zero Lyapunov exponents.

  4. 4.

    n is a winding number of tongue.

References

  1. 1.

    Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences, vol. 12. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  2. 2.

    Anishchenko, V.S., Vadivasova, T.E., Strelkova, G.I.: Synchronization of periodic self-sustained oscillations. Deterministic Nonlinear Systems. Springer Series in Synergetics. Springer, Cham (2014)

    Google Scholar 

  3. 3.

    Shilnikov, A., Shilnikov, L., Turaev, D.: On some mathematical topics in classical synchronization. A tutorial. Int. J. Bifurc. Chaos. 14, 2143–2160 (2004)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Kuznetsov, A.P., Stankevich, N.V., Turukina, L.V.: Coupled van der Pol–Duffing oscillators: phase dynamics and structure of synchronization tongues. Physica D 238, 1203–1215 (2009)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Bezruchko, B.P., Prokhorov, M.D., Seleznev, Y.P.: Oscillation types, multistability, and basins of attractors in symmetrically coupled period-doubling systems. Chaos Solitons Fractals 15, 695–711 (2003)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Wang, F., Cao, H.: Mode locking and quasiperiodicity in a discrete-time Chialvo neuron model. Commun. Nonlinear Sci. Numer. Simul. 56, 481–489 (2018)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Feudel, U.: Complex dynamics in multistable systems. Int. J. Bifurc. Chaos 18, 1607–1626 (2008)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Pisarchik, A.N., Feudel, U.: Control of multistability. Phys. Rep. 540, 167–218 (2014)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Wieczorek, S., Krauskopf, B., Lenstra, D.: Mechanisms for multistability in a semiconductor laser with optical injection. Opt. Commun. 183, 215–226 (2000)

    Article  Google Scholar 

  10. 10.

    Zhusubaliyev, Z.T., Mosekilde, E.: Multistability and hidden attractors in a multilivel DC/DC converter. Math. Comput. Simul. 109, 32–45 (2015)

    Article  Google Scholar 

  11. 11.

    Zhusubaliyev, Z.T., Mosekilde, E., Rubanov, V.G., Nabokov, R.A.: Multistability and hidden attractors in a relay system with hysteresis. Physica D 306, 6–15 (2015)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Churilov, A.N., Medvedev, A., Zhusubaliyev, Z.T.: Impulsive Goodwin oscillator with large delay: periodic odcillations, bistability, and attractors. Nonlinear Anal. Hybrid Syst. 21, 171–183 (2016)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Zhusubaliyev, Z.T., Mosekilde, E., Churilov, A.N., Medvedev, A.: Multistability and hidden attractors in an impulsive Goodwin oscillator with time delay. Eur. Phys. J. Spec. Top. 224, 1519–1539 (2015)

    Article  Google Scholar 

  14. 14.

    Rosin, D.P., Callan, K.E., Gauthier, D.J., Schöll, E.: Pulse-train solutions and excitability in an optoelectronic oscillator. EPL (Europhys. Lett.) 96, 34001 (2011)

    Article  Google Scholar 

  15. 15.

    Balakin, M.I., Ryskin, N.M.: Bifurcational mechanism of formation of developed multistability in a van der Pol oscillator with time-delayed feedback. Rus. J. Nonlinear Dyn. 13, 151164 (2017). (Russian)

    MATH  Google Scholar 

  16. 16.

    Hellen, E.H., Volkov, E.: Flexible dynamics of two quorum-sensing coupled repressilators. Phys. Rev. E 95, 022408 (2017)

    Article  Google Scholar 

  17. 17.

    Hellen, E.H., Volkov, E.: How to couple identical ring oscillators to get quasiperiodicity, extended chaos, multistability and the loss of symmetry. Commun. Nonlinear Sci. Numer. Simul. 62, 462–479 (2018)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Dvorak, A., Astakhov, V., Perlikowski, P., Kapitaniak, T.: Nonlinear resonance and synchronization in the ring of unidirectionally coupled Toda oscillators. Eur. Phys. J. Spec. Top. 225, 2635–2643 (2016)

    Article  Google Scholar 

  19. 19.

    Astakhov, S., Astakhov, O., Astakhov, V., Kurths, J.: Bifurcational mechanism of multistability formation and frequency entrainment in a van der Pol oscillator with an additional oscillatory circuit. Int. J. Bifurc. Chaos 26, 1650124 (2016)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Leonov, G.A., Kuznetsov, N.V., Vagaitsev, V.I.: Localization of hidden Chua’s attractors. Phys. Lett. A 375, 2230–2233 (2011)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Leonov, G.A., Kuznetsov, N.V.: Hidden attractors in dynamical systems. From hidden oscillations in Hilbert–Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractors in Chua circuits. Int. J. Bifurc. Chaos 23, 1330002 (2013)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Leonov, G.A., Kuznetsov, N.V., Mokaev, T.N.: Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion. Eur. Phys. J. Spec. Top. 224, 1421–1458 (2015)

    Article  Google Scholar 

  23. 23.

    Kuznetsov, N.V.: Hidden attractors in fundamental problems and engineering models. A short survey. Lect. Notes Electr. Eng. 371, 13–25 (2016)

    Article  Google Scholar 

  24. 24.

    Kuznetsov, N.V., Leonov, G.A., Mokaev, T.N., Prasad, A., Shrimali, M.D.: Finite-time Lyapunov dimension and hidden attractor of the Rabinovich system. Nonlinear Dyn. (2018). https://doi.org/10.1007/s11071-018-4054-z

    Article  MATH  Google Scholar 

  25. 25.

    Zhao, H., Lin, Y., Dai, Y.: Hidden attractors and dynamics of a general autonomous van der Pol–Duffing oscillator. Int. J. Bifurc. Chaos 24, 1450080 (2014)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Kengne, J., Njitacke, Z.T., Fotsin, H.B.: Dynamical analysis of a simple autonomous jerk system with multiple attractors. Nonlinear Dyn. 83, 751–765 (2016)

    MathSciNet  Article  Google Scholar 

  27. 27.

    Kuznetsov, N.V., Leonov, G.A., Yuldashev, M.V., Yuldashev, R.V.: Hidden attractors in dynamical models of phase-locked loop circuits: limitations of simulation in MATLAB and SPICE. Commun. Nonlinear Sci. Numer. Simul. 51, 39–49 (2017)

    Article  Google Scholar 

  28. 28.

    Chen, G., Kuznetsov, N.V., Leonov, G.A., Mokaev, T.N.: Hidden attractors on one path: Glukhovsky–Dolzhansky, Lorenz, and Rabinovich systems. Int. J. Bifurc. Chaos 27, 1750115 (2017)

    MathSciNet  Article  Google Scholar 

  29. 29.

    Xu, Q., Zhang, Q., Bao, B., Hu, Y.: Non-autonomous second-order memristive chaotic circuit. IEEE Access 5, 21039–21045 (2017)

    Article  Google Scholar 

  30. 30.

    Danca, M.-F., Kuznetsov, N.V.: Hidden chaotic sets in a Hopfield neural system. Nonlinear Dyn. Chaos Solitons Fractals 103, 144–150 (2017)

    MathSciNet  Article  Google Scholar 

  31. 31.

    Danca, M.-F., Fečkan, M., Kuznetsov, N.V., Chen, G.: Complex dynamics, hidden attractors and continuous approximation of a fractional-order hyperchaotic PWC system. Nonlinear Dyn. 91, 2523–2540 (2018)

    Article  Google Scholar 

  32. 32.

    Dudkowski, D., Jafari, S., Kapitaniak, T., Kuznetsov, N.V., Leonov, G.A., Prasad, A.: Hidden attractors in dynamical systems. Phys. Rep. 637, 1–50 (2016)

    MathSciNet  Article  Google Scholar 

  33. 33.

    Anishchenko, V.S., Nikolaev, S.M.: Generator of quasi-periodic oscillations featuring two-dimensional torus doubling bifurcations. Tech. Phys. Lett. 31, 853–855 (2005)

    Article  Google Scholar 

  34. 34.

    Kuznetsov, A.P., Kuznetsov, S.P., Stankevich, N.V.: A simple autonomous quasiperiodic self-oscillator. Commun. Nonlinear Sci. Numer. Simul. 15, 1676–1681 (2010)

    Article  Google Scholar 

  35. 35.

    Kuznetsov, A.P., Kuznetsov, S.P., Mosekilde, E., Stankevich, N.V.: Co-existing hidden attractors in a radiophysical oscillator system. J. Phys. A Math. Theor. 48, 125101 (2015)

    Article  Google Scholar 

  36. 36.

    Wiggers, V., Rech, P.C.: Chaos, periodicity, and quasiperiodicity in a radio-physical oscillator, Int. J. Bifurc. Chaos 27, 1730023 (2017)

    MathSciNet  Article  Google Scholar 

  37. 37.

    Ermentrout, B.: Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students, vol. 14. SIAM, Philadelphia (2002)

    Google Scholar 

  38. 38.

    Grebogi, C., Ott, E., Yorke, J.A.: Chaotic attractors in crisis. Phys. Rev. Lett. 48, 15071510 (1982)

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Russian Foundation for Basic Research (Grant No. 17-302-50014). Authors thank S.P. Kuznetsov for the helpful discussions and R. Volkova for the editorial efforts.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nataliya Stankevich.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stankevich, N., Volkov, E. Multistability in a three-dimensional oscillator: tori, resonant cycles and chaos. Nonlinear Dyn 94, 2455–2467 (2018). https://doi.org/10.1007/s11071-018-4502-9

Download citation

Keywords

  • Multistability
  • Quasiperiodic oscillations
  • Chaos
  • Bifurcation analysis
  • Lyapunov exponents

Mathematics Subject Classification

  • 37C55
  • 37E45
  • 37E99