Abstract
The emergence of multistability in a simple three-dimensional autonomous oscillator is investigated using numerical simulations, calculations of Lyapunov exponents and bifurcation analysis over a broad area of two-dimensional plane of control parameters. Using Neimark–Sacker bifurcation of 1:1 limit cycle as the starting regime, many parameter islands with the coexisting attractors were detected in the phase diagram, including the coexistence of torus, resonant limit cycles and chaos; and transitions between the regimes were considered in detail. The overlapping between resonant limit cycles of different winding numbers, torus and chaos forms the multistability.
This is a preview of subscription content, access via your institution.











Notes
- 1.
Here and further we use symbol: \(y=\dot{x}\).
- 2.
Chart of dynamic regimes was constructed in the same way as the chart of Lyapunov exponents, except that for each point of the parameter plane the period of oscillations was determined by the number of fixed points in the Poincaré section by plane \(y=0\).
- 3.
If we consider the bifurcation tree we cannot distinguish between quasiperiodic and chaotic oscillations, but using the charts of Lyapunov exponents in Fig. 2, we can see that for mentioned parameters there are quaisperiodic oscillations with two zero Lyapunov exponents.
- 4.
n is a winding number of tongue.
References
- 1.
Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences, vol. 12. Cambridge University Press, Cambridge (2003)
- 2.
Anishchenko, V.S., Vadivasova, T.E., Strelkova, G.I.: Synchronization of periodic self-sustained oscillations. Deterministic Nonlinear Systems. Springer Series in Synergetics. Springer, Cham (2014)
- 3.
Shilnikov, A., Shilnikov, L., Turaev, D.: On some mathematical topics in classical synchronization. A tutorial. Int. J. Bifurc. Chaos. 14, 2143–2160 (2004)
- 4.
Kuznetsov, A.P., Stankevich, N.V., Turukina, L.V.: Coupled van der Pol–Duffing oscillators: phase dynamics and structure of synchronization tongues. Physica D 238, 1203–1215 (2009)
- 5.
Bezruchko, B.P., Prokhorov, M.D., Seleznev, Y.P.: Oscillation types, multistability, and basins of attractors in symmetrically coupled period-doubling systems. Chaos Solitons Fractals 15, 695–711 (2003)
- 6.
Wang, F., Cao, H.: Mode locking and quasiperiodicity in a discrete-time Chialvo neuron model. Commun. Nonlinear Sci. Numer. Simul. 56, 481–489 (2018)
- 7.
Feudel, U.: Complex dynamics in multistable systems. Int. J. Bifurc. Chaos 18, 1607–1626 (2008)
- 8.
Pisarchik, A.N., Feudel, U.: Control of multistability. Phys. Rep. 540, 167–218 (2014)
- 9.
Wieczorek, S., Krauskopf, B., Lenstra, D.: Mechanisms for multistability in a semiconductor laser with optical injection. Opt. Commun. 183, 215–226 (2000)
- 10.
Zhusubaliyev, Z.T., Mosekilde, E.: Multistability and hidden attractors in a multilivel DC/DC converter. Math. Comput. Simul. 109, 32–45 (2015)
- 11.
Zhusubaliyev, Z.T., Mosekilde, E., Rubanov, V.G., Nabokov, R.A.: Multistability and hidden attractors in a relay system with hysteresis. Physica D 306, 6–15 (2015)
- 12.
Churilov, A.N., Medvedev, A., Zhusubaliyev, Z.T.: Impulsive Goodwin oscillator with large delay: periodic odcillations, bistability, and attractors. Nonlinear Anal. Hybrid Syst. 21, 171–183 (2016)
- 13.
Zhusubaliyev, Z.T., Mosekilde, E., Churilov, A.N., Medvedev, A.: Multistability and hidden attractors in an impulsive Goodwin oscillator with time delay. Eur. Phys. J. Spec. Top. 224, 1519–1539 (2015)
- 14.
Rosin, D.P., Callan, K.E., Gauthier, D.J., Schöll, E.: Pulse-train solutions and excitability in an optoelectronic oscillator. EPL (Europhys. Lett.) 96, 34001 (2011)
- 15.
Balakin, M.I., Ryskin, N.M.: Bifurcational mechanism of formation of developed multistability in a van der Pol oscillator with time-delayed feedback. Rus. J. Nonlinear Dyn. 13, 151164 (2017). (Russian)
- 16.
Hellen, E.H., Volkov, E.: Flexible dynamics of two quorum-sensing coupled repressilators. Phys. Rev. E 95, 022408 (2017)
- 17.
Hellen, E.H., Volkov, E.: How to couple identical ring oscillators to get quasiperiodicity, extended chaos, multistability and the loss of symmetry. Commun. Nonlinear Sci. Numer. Simul. 62, 462–479 (2018)
- 18.
Dvorak, A., Astakhov, V., Perlikowski, P., Kapitaniak, T.: Nonlinear resonance and synchronization in the ring of unidirectionally coupled Toda oscillators. Eur. Phys. J. Spec. Top. 225, 2635–2643 (2016)
- 19.
Astakhov, S., Astakhov, O., Astakhov, V., Kurths, J.: Bifurcational mechanism of multistability formation and frequency entrainment in a van der Pol oscillator with an additional oscillatory circuit. Int. J. Bifurc. Chaos 26, 1650124 (2016)
- 20.
Leonov, G.A., Kuznetsov, N.V., Vagaitsev, V.I.: Localization of hidden Chua’s attractors. Phys. Lett. A 375, 2230–2233 (2011)
- 21.
Leonov, G.A., Kuznetsov, N.V.: Hidden attractors in dynamical systems. From hidden oscillations in Hilbert–Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractors in Chua circuits. Int. J. Bifurc. Chaos 23, 1330002 (2013)
- 22.
Leonov, G.A., Kuznetsov, N.V., Mokaev, T.N.: Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion. Eur. Phys. J. Spec. Top. 224, 1421–1458 (2015)
- 23.
Kuznetsov, N.V.: Hidden attractors in fundamental problems and engineering models. A short survey. Lect. Notes Electr. Eng. 371, 13–25 (2016)
- 24.
Kuznetsov, N.V., Leonov, G.A., Mokaev, T.N., Prasad, A., Shrimali, M.D.: Finite-time Lyapunov dimension and hidden attractor of the Rabinovich system. Nonlinear Dyn. (2018). https://doi.org/10.1007/s11071-018-4054-z
- 25.
Zhao, H., Lin, Y., Dai, Y.: Hidden attractors and dynamics of a general autonomous van der Pol–Duffing oscillator. Int. J. Bifurc. Chaos 24, 1450080 (2014)
- 26.
Kengne, J., Njitacke, Z.T., Fotsin, H.B.: Dynamical analysis of a simple autonomous jerk system with multiple attractors. Nonlinear Dyn. 83, 751–765 (2016)
- 27.
Kuznetsov, N.V., Leonov, G.A., Yuldashev, M.V., Yuldashev, R.V.: Hidden attractors in dynamical models of phase-locked loop circuits: limitations of simulation in MATLAB and SPICE. Commun. Nonlinear Sci. Numer. Simul. 51, 39–49 (2017)
- 28.
Chen, G., Kuznetsov, N.V., Leonov, G.A., Mokaev, T.N.: Hidden attractors on one path: Glukhovsky–Dolzhansky, Lorenz, and Rabinovich systems. Int. J. Bifurc. Chaos 27, 1750115 (2017)
- 29.
Xu, Q., Zhang, Q., Bao, B., Hu, Y.: Non-autonomous second-order memristive chaotic circuit. IEEE Access 5, 21039–21045 (2017)
- 30.
Danca, M.-F., Kuznetsov, N.V.: Hidden chaotic sets in a Hopfield neural system. Nonlinear Dyn. Chaos Solitons Fractals 103, 144–150 (2017)
- 31.
Danca, M.-F., Fečkan, M., Kuznetsov, N.V., Chen, G.: Complex dynamics, hidden attractors and continuous approximation of a fractional-order hyperchaotic PWC system. Nonlinear Dyn. 91, 2523–2540 (2018)
- 32.
Dudkowski, D., Jafari, S., Kapitaniak, T., Kuznetsov, N.V., Leonov, G.A., Prasad, A.: Hidden attractors in dynamical systems. Phys. Rep. 637, 1–50 (2016)
- 33.
Anishchenko, V.S., Nikolaev, S.M.: Generator of quasi-periodic oscillations featuring two-dimensional torus doubling bifurcations. Tech. Phys. Lett. 31, 853–855 (2005)
- 34.
Kuznetsov, A.P., Kuznetsov, S.P., Stankevich, N.V.: A simple autonomous quasiperiodic self-oscillator. Commun. Nonlinear Sci. Numer. Simul. 15, 1676–1681 (2010)
- 35.
Kuznetsov, A.P., Kuznetsov, S.P., Mosekilde, E., Stankevich, N.V.: Co-existing hidden attractors in a radiophysical oscillator system. J. Phys. A Math. Theor. 48, 125101 (2015)
- 36.
Wiggers, V., Rech, P.C.: Chaos, periodicity, and quasiperiodicity in a radio-physical oscillator, Int. J. Bifurc. Chaos 27, 1730023 (2017)
- 37.
Ermentrout, B.: Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students, vol. 14. SIAM, Philadelphia (2002)
- 38.
Grebogi, C., Ott, E., Yorke, J.A.: Chaotic attractors in crisis. Phys. Rev. Lett. 48, 15071510 (1982)
Acknowledgements
This work was supported by Russian Foundation for Basic Research (Grant No. 17-302-50014). Authors thank S.P. Kuznetsov for the helpful discussions and R. Volkova for the editorial efforts.
Author information
Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Rights and permissions
About this article
Cite this article
Stankevich, N., Volkov, E. Multistability in a three-dimensional oscillator: tori, resonant cycles and chaos. Nonlinear Dyn 94, 2455–2467 (2018). https://doi.org/10.1007/s11071-018-4502-9
Received:
Accepted:
Published:
Issue Date:
Keywords
- Multistability
- Quasiperiodic oscillations
- Chaos
- Bifurcation analysis
- Lyapunov exponents
Mathematics Subject Classification
- 37C55
- 37E45
- 37E99