Skip to main content
Log in

Dynamic analysis of a tethered satellite system for space debris capture

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Herein we analyze the dynamic behavior of a tethered satellite system for space debris capture, considering the large deformation of a tether. The tethered satellite system is modeled as two point masses and a string, and the equations of motion of the tethered satellite system are derived by using the absolute nodal coordinate formulation. To calculate the net velocity after debris capture, equations are established describing the momentum exchange between the net and the space debris. By using this model, the dynamic responses of the tethered satellite system after debris capture are calculated for the variations of the capture angles and capture velocities of the debris. This allows analysis of the orbital response of the tethered satellite system and the large tensions arising from tether tumbling. Finally, we analyze the effects of varying system parameters of the tethered satellite system and the space debris upon the dynamic responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Carroll, J.A., Oldson, J.C.: Tethers for small satellite applications. In: AIAA/USU Small Satellite Conference, Logan, Utah (1995)

  2. Cosmo, M.L., Lorenzini, E.C.: Tethers in Space Handbook, 3rd edn. Smithsonian Astrophysical Observatory, Cambridge (1997)

    Google Scholar 

  3. Chen, Y., Huang, R., Ren, X., He, L., He, Y.: History of the tether concept and tether missions: a review. ISRN Astron. Astrophys. 2013, 7 (2013)

    Article  Google Scholar 

  4. Williams, P., Blanksby, C., Trivailo, P., Fujii, H.A.: In-plane payload capture using tethers. Acta Astron. 57, 772–787 (2005)

    Article  Google Scholar 

  5. Williams, P.: Dynamics and control of spinning tethers for rendezvous in elliptic orbits. J. Vib. Control 12, 771–797 (2006)

    Article  MathSciNet  Google Scholar 

  6. Zhai, G., Liang, B., Li, C.: On-orbit capture with flexible tether-net system. Acta Astron. 65, 613–623 (2009)

    Article  Google Scholar 

  7. Wang, D., Huang, P., Cai, J., Meng, Z.: Coordinated control of tethered space robot using mobile tether attachment point in approaching phase. Adv. Sp. Res. 54, 1077–1091 (2014)

    Article  Google Scholar 

  8. Steiner, W., Zemann, J., Steindl, A., Troger, H.: Numerical study of large amplitude oscillations of a two-satellite continuous tether system with a varying length. Acta Astron. 35, 607–621 (1995)

    Article  Google Scholar 

  9. Mankala, K.K., Agrawal, S.K.: Dynamic modeling and simulation of impact in tether net-gripper systems. Multibody Syst. Dyn. 11, 235–250 (2004)

    Article  MathSciNet  Google Scholar 

  10. Benvenuto, R., Salvi, S., Lavagna, M.: Dynamics analysis and GNC design of flexible systems for the space debris active removal. Acta Astron. 110, 247–265 (2015)

    Article  Google Scholar 

  11. Huang, P., Zhang, F., Ma, J., Meng, Z., Liu, Z.: Dynamics and configuration control of the maneuvering-net space robot system. Adv. Sp. Res. 55, 1004–1014 (2015)

    Article  Google Scholar 

  12. Liu, H.T., Zhang, Q.B., Yang, L.P., Zhu, Y.W., Zhang, Y.W.: Dynamics of tether-tugging reorbiting with net capture. Sci. China Technol. Sci. 57, 2407–2417 (2014)

    Article  Google Scholar 

  13. Linskens, H.T.K., Mooij, E.: Tether dynamics analysis and guidance and control design for active space-debris removal. J. Guid. Control Dyn. 39, 1232–1243 (2016)

    Article  Google Scholar 

  14. Atashgah, M.A.A., Gazerpour, H., Lavaei, A., Zarei, Y.: An active time-optimal control for space debris deorbiting via geomagnetic field. Celest. Mech. Dyn. Astr. 128, 343–360 (2017)

    Article  Google Scholar 

  15. Qi, R., Misra, A.K., Zuo, Z.: Active debris removal using double-tethered space-tug system. J. Guid. Control Dyn. 40, 722–730 (2017)

    Article  Google Scholar 

  16. Sanchez-Arriaga, G., Chen, X., Lorenzini, E.C.: Optimal design and deorbiting performance of thermionic tethers in geostationary transfer orbits. J. Propuls. Power 33, 425–432 (2017)

    Article  Google Scholar 

  17. Li, G.Q., Zhu, Z.H., Ruel, S., Meguid, S.A.: Multiphysics elastodynamic finite element analysis of space debris deorbit stability and efficiency by electrodynamic tethers. Acta Astron. 137, 320–333 (2017)

    Article  Google Scholar 

  18. Shabana, A.A.: Computer implementation of the absolute nodal coordinate formulation for flexible multibody dynamics. Nonlinear Dyn. 16, 293–306 (1998)

    Article  MathSciNet  Google Scholar 

  19. Berzeri, M., Shabana, A.A.: Development of simple models for the elastic forces in the absolute nodal co-ordinate formulation. J. Sound Vib. 235, 539–565 (2000)

    Article  Google Scholar 

  20. Gerstmayr, J., Shabana, A.A.: Analysis of thin beams and cables using the absolute nodal co-ordinate formulation. Nonlinear Dyn. 45, 109–130 (2006)

    Article  Google Scholar 

  21. Yoo, W.S., Lee, J.H., Park, S.J., Sohn, J.H., Dmitrochenko, O., Pogorelov, D.: Large oscillations of a thin cantilever beam physical experiments and simulation using the absolute nodal coordinate formulation. Nonlinear Dyn. 34, 3–29 (2003)

    Article  Google Scholar 

  22. Valverde, J., García-Vallejo, D.: Stability analysis of a substructured model of the rotating beam. Nonlinear Dyn. 55, 355–372 (2009)

    Article  Google Scholar 

  23. Čepon, G., Manin, L., Boltežar, M.: Experimental identification of the contact parameters between a \(V\)-ribbed belt and a pulley. Mech. Mach. Theor. 45, 1424–1433 (2010)

    Article  Google Scholar 

  24. Tang, J.L., Ren, G.X., Zhu, W.D., Ren, H.: Dynamics of variable-length tethers with application to tethered satellite deployment. Commun. Nonlinear Sci. Numer. Simul. 16, 3411–3424 (2011)

    Article  MathSciNet  Google Scholar 

  25. Shan, M., Guo, J., Gill, E.: Deployment dynamics of tethered-net for the space debris removal. Acta Astron. 132, 293–302 (2017)

    Article  Google Scholar 

  26. Sun, X., Xu, M., Zhong, R.: Dynamic analysis of the tether transportation system using absolute nodal coordinate formulation. Acta Astron. 139, 266–277 (2017)

    Article  Google Scholar 

  27. Wriggers, P.: Nichtlineare Finite-Element-Methoden. Springer, Berlin (2001)

    Book  Google Scholar 

  28. Dmitrochenko, O., Yoo, W.S., Pogorelov, D.: Helicoseir as shape of a rotating string (II): 3D theory and simulation using ANCF. Multibody Syst. Dyn. 15, 181–200 (2006)

    Article  MathSciNet  Google Scholar 

  29. Jasper, L.E.Z., Seubert, C.R., Schaub, H., Valery, T., Yutkin, E.: Tethered tug for large low Earth orbit debris removal. In: AAS/AIAA Astrodynamics Specialists Conference, Charleston, South Carolina, Paper No. AAS 12–252 (2012)

Download references

Acknowledgements

This work was supported by a Grant from the National Research Foundation of Korea (NRF), funded by the Korean government (MEST) (NRF-2018R1D1A1B07050187).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jintai Chung.

Ethics declarations

Conflict of interest

Jonghyuk Lim and Jintai Chung declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, J., Chung, J. Dynamic analysis of a tethered satellite system for space debris capture. Nonlinear Dyn 94, 2391–2408 (2018). https://doi.org/10.1007/s11071-018-4498-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4498-1

Keywords

Navigation