Abstract
Herein we analyze the dynamic behavior of a tethered satellite system for space debris capture, considering the large deformation of a tether. The tethered satellite system is modeled as two point masses and a string, and the equations of motion of the tethered satellite system are derived by using the absolute nodal coordinate formulation. To calculate the net velocity after debris capture, equations are established describing the momentum exchange between the net and the space debris. By using this model, the dynamic responses of the tethered satellite system after debris capture are calculated for the variations of the capture angles and capture velocities of the debris. This allows analysis of the orbital response of the tethered satellite system and the large tensions arising from tether tumbling. Finally, we analyze the effects of varying system parameters of the tethered satellite system and the space debris upon the dynamic responses.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Carroll, J.A., Oldson, J.C.: Tethers for small satellite applications. In: AIAA/USU Small Satellite Conference, Logan, Utah (1995)
Cosmo, M.L., Lorenzini, E.C.: Tethers in Space Handbook, 3rd edn. Smithsonian Astrophysical Observatory, Cambridge (1997)
Chen, Y., Huang, R., Ren, X., He, L., He, Y.: History of the tether concept and tether missions: a review. ISRN Astron. Astrophys. 2013, 7 (2013)
Williams, P., Blanksby, C., Trivailo, P., Fujii, H.A.: In-plane payload capture using tethers. Acta Astron. 57, 772–787 (2005)
Williams, P.: Dynamics and control of spinning tethers for rendezvous in elliptic orbits. J. Vib. Control 12, 771–797 (2006)
Zhai, G., Liang, B., Li, C.: On-orbit capture with flexible tether-net system. Acta Astron. 65, 613–623 (2009)
Wang, D., Huang, P., Cai, J., Meng, Z.: Coordinated control of tethered space robot using mobile tether attachment point in approaching phase. Adv. Sp. Res. 54, 1077–1091 (2014)
Steiner, W., Zemann, J., Steindl, A., Troger, H.: Numerical study of large amplitude oscillations of a two-satellite continuous tether system with a varying length. Acta Astron. 35, 607–621 (1995)
Mankala, K.K., Agrawal, S.K.: Dynamic modeling and simulation of impact in tether net-gripper systems. Multibody Syst. Dyn. 11, 235–250 (2004)
Benvenuto, R., Salvi, S., Lavagna, M.: Dynamics analysis and GNC design of flexible systems for the space debris active removal. Acta Astron. 110, 247–265 (2015)
Huang, P., Zhang, F., Ma, J., Meng, Z., Liu, Z.: Dynamics and configuration control of the maneuvering-net space robot system. Adv. Sp. Res. 55, 1004–1014 (2015)
Liu, H.T., Zhang, Q.B., Yang, L.P., Zhu, Y.W., Zhang, Y.W.: Dynamics of tether-tugging reorbiting with net capture. Sci. China Technol. Sci. 57, 2407–2417 (2014)
Linskens, H.T.K., Mooij, E.: Tether dynamics analysis and guidance and control design for active space-debris removal. J. Guid. Control Dyn. 39, 1232–1243 (2016)
Atashgah, M.A.A., Gazerpour, H., Lavaei, A., Zarei, Y.: An active time-optimal control for space debris deorbiting via geomagnetic field. Celest. Mech. Dyn. Astr. 128, 343–360 (2017)
Qi, R., Misra, A.K., Zuo, Z.: Active debris removal using double-tethered space-tug system. J. Guid. Control Dyn. 40, 722–730 (2017)
Sanchez-Arriaga, G., Chen, X., Lorenzini, E.C.: Optimal design and deorbiting performance of thermionic tethers in geostationary transfer orbits. J. Propuls. Power 33, 425–432 (2017)
Li, G.Q., Zhu, Z.H., Ruel, S., Meguid, S.A.: Multiphysics elastodynamic finite element analysis of space debris deorbit stability and efficiency by electrodynamic tethers. Acta Astron. 137, 320–333 (2017)
Shabana, A.A.: Computer implementation of the absolute nodal coordinate formulation for flexible multibody dynamics. Nonlinear Dyn. 16, 293–306 (1998)
Berzeri, M., Shabana, A.A.: Development of simple models for the elastic forces in the absolute nodal co-ordinate formulation. J. Sound Vib. 235, 539–565 (2000)
Gerstmayr, J., Shabana, A.A.: Analysis of thin beams and cables using the absolute nodal co-ordinate formulation. Nonlinear Dyn. 45, 109–130 (2006)
Yoo, W.S., Lee, J.H., Park, S.J., Sohn, J.H., Dmitrochenko, O., Pogorelov, D.: Large oscillations of a thin cantilever beam physical experiments and simulation using the absolute nodal coordinate formulation. Nonlinear Dyn. 34, 3–29 (2003)
Valverde, J., García-Vallejo, D.: Stability analysis of a substructured model of the rotating beam. Nonlinear Dyn. 55, 355–372 (2009)
Čepon, G., Manin, L., Boltežar, M.: Experimental identification of the contact parameters between a \(V\)-ribbed belt and a pulley. Mech. Mach. Theor. 45, 1424–1433 (2010)
Tang, J.L., Ren, G.X., Zhu, W.D., Ren, H.: Dynamics of variable-length tethers with application to tethered satellite deployment. Commun. Nonlinear Sci. Numer. Simul. 16, 3411–3424 (2011)
Shan, M., Guo, J., Gill, E.: Deployment dynamics of tethered-net for the space debris removal. Acta Astron. 132, 293–302 (2017)
Sun, X., Xu, M., Zhong, R.: Dynamic analysis of the tether transportation system using absolute nodal coordinate formulation. Acta Astron. 139, 266–277 (2017)
Wriggers, P.: Nichtlineare Finite-Element-Methoden. Springer, Berlin (2001)
Dmitrochenko, O., Yoo, W.S., Pogorelov, D.: Helicoseir as shape of a rotating string (II): 3D theory and simulation using ANCF. Multibody Syst. Dyn. 15, 181–200 (2006)
Jasper, L.E.Z., Seubert, C.R., Schaub, H., Valery, T., Yutkin, E.: Tethered tug for large low Earth orbit debris removal. In: AAS/AIAA Astrodynamics Specialists Conference, Charleston, South Carolina, Paper No. AAS 12–252 (2012)
Acknowledgements
This work was supported by a Grant from the National Research Foundation of Korea (NRF), funded by the Korean government (MEST) (NRF-2018R1D1A1B07050187).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
Jonghyuk Lim and Jintai Chung declare that they have no conflict of interest.
Rights and permissions
About this article
Cite this article
Lim, J., Chung, J. Dynamic analysis of a tethered satellite system for space debris capture. Nonlinear Dyn 94, 2391–2408 (2018). https://doi.org/10.1007/s11071-018-4498-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11071-018-4498-1