Skip to main content
Log in

Wavelength division multiplexing secure communication scheme based on an optically coupled phase chaos system and PM-to-IM conversion mechanism

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We propose a wavelength division multiplexing secure communication scheme based on an optically coupled phase chaos system and phase modulation to intensity modulation (PM-to-IM) conversion mechanism. In this scheme, three channels of intensity-modulated data signal are simultaneously distorted by chaotic phase noise. Dispersion-induced PM-to-IM conversion mechanism is used to mask the data signal in intensity dimension. An additional self-phase modulation feedback loop in each channel is used to further scramble the phase dimension, and a time-domain key is introduced by a fiber delay line. The numerical results indicate the good encryption and decryption performance as the fundamental communication characteristics. The wavelength spacing under different parameter settings is also investigated in the wavelength division multiplexing scenario. Moreover, time delay signature concealment is confirmed by using both autocorrelation function and delayed mutual information approaches. Finally, the sensitivity dependence on key parameters and robustness of the scheme are discussed in detail. Both the security and feasibility can be guaranteed. The scheme has the potential to be used in large capacity optical secure transmission systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Argyris, A., Syvridis, D., Larger, L., Annovazzi-Lodi, V., Colet, P., Fischer, I., Garcia-Ojalvo, J., Mirasso, C.R., Pesquera, L., Shore, K.A.: Chaos-based communications at high bit rates using commercial fibre-optic links. Nature 438(7066), 343–346 (2005)

    Article  Google Scholar 

  2. Lavrov, R., Jacquot, M., Larger, L.: Nonlocal nonlinear electro-optic phase dynamics demonstrating 10 Gb/s chaos communications. IEEE J. Quantum Electron. 46(10), 1430–1435 (2010)

    Article  Google Scholar 

  3. Ai, J., Wang, L., Wang, J.: Secure communications of CAP-4 and OOK signals over MMF based on electro-optic chaos. Opt. Lett. 42(18), 3662–3665 (2017)

    Article  Google Scholar 

  4. Gao, X., Cheng, M., Deng, L., Liu, L., Hu, H., Liu, D.: A novel chaotic system with suppressed time-delay signature based on multiple electro-optic nonlinear loops. Nonlinear Dyn. 82(1–2), 611–617 (2015)

    Article  MathSciNet  Google Scholar 

  5. Jiang, N., Liu, D., Zhang, C., Qiu, K.: Modeling and simulation of chaos-based security-enhanced WDM-PON. IEEE Photonics Technol. Lett. 25(19), 1912–1915 (2013)

    Article  Google Scholar 

  6. Argyris, A., Grivas, E., Bogris, A., Syviridis, D.: Transmission effects in wavelength division multiplexed chaotic optical communication systems. J. Lightwave Technol. 28(21), 3107–3114 (2010)

    Google Scholar 

  7. Chen, X., Chang, W., Yin, H., Zhao, Q., Yue, H.: Experimental investigation of wavelength division multiplexing secure communications with chaotic optical channel. In: Asia Communications and Photonics Conference. Optical Society of America: AW4F. 2 (2013)

  8. Elgar, S., Chandran, V.: Higher order spectral analysis of Chua’s circuit. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 40(10), 689–692 (1993)

    Article  Google Scholar 

  9. Mork, J., Tromborg, B., Mark, J.: Chaos in semiconductor lasers with optical feedback: theory and experiment. IEEE J. Quantum Electron. 28(1), 93–108 (1992)

    Article  Google Scholar 

  10. Gastaud, N., Poinsot, S., Larger, L., Merolla, J.M., Hanna, M., Goedgebuer, J.P., Malassenet, F.: Electro-optical chaos for multi-10 Gbit/s optical transmissions. Electron. Lett. 40(14), 898–899 (2004)

    Article  Google Scholar 

  11. Jiang, X., Cheng, M., Luo, F., Deng, L., Fu, S., Ke, C., Zhang, M., Tang, M., Ping, S., Liu, D.: Electro-optic chaotic system based on the reverse-time chaos theory and a nonlinear hybrid feedback loop. Opt. Express 24(25), 28804–28814 (2016)

    Article  Google Scholar 

  12. Rontani, D., Mercier, E., Wolfersberger, D., Sciamanna, M.: Enhanced complexity of optical chaos in a laser diode with phase-conjugate feedback. Opt. Lett. 41(20), 4637–4640 (2016)

    Article  Google Scholar 

  13. Liu, L., Miao, S., Cheng, M., Gao, X.: A new switching parameter varying optoelectronic delayed feedback model with computer simulation. Sci. Rep. 6, 22295 (2016)

    Article  Google Scholar 

  14. Elsonbaty, A., Hegazy, S.F., Obayya, S.S.: Simultaneous suppression of time-delay signature in intensity and phase of dual-channel chaos communication. IEEE J. Quantum Electron. 51(9), 1–9 (2015)

    Article  Google Scholar 

  15. Udaltsov, V.S., Goedgebuer, J.P., Larger, L., Cuenot, J.B., Levy, P., Rhodes, W.T.: Cracking chaos-based encryption systems ruled by nonlinear time delay differential equations. Phys. Lett. A 308(1), 54–60 (2003)

    Article  MathSciNet  Google Scholar 

  16. Udaltsov, V.S., Larger, L., Goedgebuer, J.P., Locquet, A., Citrin, D.S.: Time delay identification in chaotic cryptosystems ruled by delay-differential equations. J. Opt. Technol. 72(5), 373–377 (2005)

    Article  Google Scholar 

  17. Li, S.S., Liu, Q., Chan, S.C.: Distributed feedbacks for time-delay signature suppression of chaos generated from a semiconductor laser. IEEE Photonics J. 4(5), 1930–1935 (2012)

    Article  Google Scholar 

  18. Xiao, P., Wu, Z.M., Wu, J.G., Jiang, L., Deng, T., Tang, X., Fan, L., Xia, G.Q.: Time-delay signature concealment of chaotic output in a vertical-cavity surface-emitting laser with double variable-polarization optical feedback. Opt. Commun. 286, 339–343 (2013)

    Article  Google Scholar 

  19. Xue, C., Jiang, N., Li, G., Wang, C., Lin, S., Lv, Y., Qiu, K.: Time delay signature suppression and complexity enhancement of chaos in laser with self-phase-modulated optical feedback. In: CLEO: QELS\(\_\)Fundamental Science. Optical Society of America: JTu5A. 105 (2017)

  20. Wang, D., Wang, L., Zhao, T., Gao, H., Wang, Y., Chen, X., Wang, A.: Time delay signature elimination of chaos in a semiconductor laser by dispersive feedback from a chirped FBG. Opt. Express 25(10), 10911–10924 (2017)

    Article  Google Scholar 

  21. Nguimdo, R.M., Colet, P., Larger, L., Pesquera, L.: Digital key for chaos communication performing time delay concealment. Phys. Rev. Lett. 107(3), 034103 (2011)

    Article  Google Scholar 

  22. Nguimdo, R.M., Colet, P.: Electro-optic phase chaos systems with an internal variable and a digital key. Opt. Express 20(23), 25333–25344 (2012)

    Article  Google Scholar 

  23. Xue, C., Jiang, N., Lv, Y., Li, G., Lin, S., Qiu, K.: Security-enhanced chaos communication with time-delay signature suppression and phase encryption. Opt. Lett. 41(16), 3690–3693 (2016)

    Article  Google Scholar 

  24. Cheng, M., Deng, L., Li, H., Liu, D.: Enhanced secure strategy for electro-optic chaotic systems with delayed dynamics by using fractional Fourier transformation. Opt. Express 22(5), 5241–5251 (2014)

    Article  Google Scholar 

  25. Li, N., Pan, W., Locquet, A., Citrin, D.S.: Time-delay concealment and complexity enhancement of an external-cavity laser through optical injection. Opt. Lett. 40(19), 4416–4419 (2015)

    Article  Google Scholar 

  26. Mu, P., Pan, W., Yan, L., Luo, B., Li, N., Xu, M.: Experimental evidence of time-delay concealment in a DFB laser with dual-chaotic optical injections. IEEE Photonics Technol. Lett. 28(2), 131–134 (2016)

    Article  Google Scholar 

  27. Cheng, C.H., Chen, Y.C., Lin, F.Y.: Chaos time delay signature suppression and bandwidth enhancement by electrical heterodyning. Opt. Express 23(3), 2308–2319 (2015)

    Article  Google Scholar 

  28. Wang, A., Wang, B., Li, L., Wang, Y., Shore, K.A.: Optical heterodyne generation of high-dimensional and broadband white chaos. IEEE J. Sel. Top. Quantum Electron. 21(6), 531–540 (2015)

    Article  Google Scholar 

  29. Wu, J.G., Wu, Z.M., Xia, G.Q., Feng, G.Y.: Evolution of time delay signature of chaos generated in a mutually delay-coupled semiconductor lasers system. Opt. Express 20(2), 1741–1753 (2012)

    Article  Google Scholar 

  30. Li, N., Pan, W., Xiang, S., Yan, L., Luo, B., Zou, X.: Loss of time delay signature in broadband cascade-coupled semiconductor lasers. IEEE Photonics Technol. Lett. 24(23), 2187–2190 (2012)

    Article  Google Scholar 

  31. Cheng, M., Gao, X., Deng, L., Liu, L., Deng, Y., Fu, S., Zhang, M., Liu, D.: Time delay concealment in a three-dimensional electro-optic chaos system. IEEE Photonics Technol. Lett. 27(9), 1030–1033 (2015)

    Article  Google Scholar 

  32. Larger, L., Goedgebuer, J.P.: Encryption using chaotic dynamics for optical telecommunications. C. R. Phys. 5(6), 609–611 (2004)

    Article  Google Scholar 

  33. Locquet, A.: Chaos-Based Secure Optical Communications Using Semiconductor Laser. Handbook of Information and Communication Security, pp. 451–478. Springer, Berlin (2010)

    Book  Google Scholar 

  34. Zhu, X., Cheng, M., Deng, L., Jiang, X., Ke, C., Zhang, M., Fu, S., Tang, M., Ping, S., Liu, D.: An optically coupled electro-optic chaos system with suppressed time-delay signature. IEEE Photonics J. 9(3), 1–9 (2017)

    Google Scholar 

  35. Cheng, M., Deng, L., Gao, X., Li, H., Tang, M., Fu, S., Ping, S., Liu, D.: Security-enhanced OFDM-PON using hybrid chaotic system. IEEE Photonics Technol. Lett. 27(3), 326–329 (2015)

    Article  Google Scholar 

  36. Xue, C., Jiang, N., Liu, D., Zhang, F., Ma, H., Li, G., Qiu, K.: High-speed independent random phase-modulated dual-loop feedback performing security-enhanced chaos communication. In: Asia Communications and Photonics Conference. Optical Society of America: AF4C. 4 (2016)

  37. Oden, J., Lavrov, R., Chembo, Y.K., Larger, L.: Multi-Gbit/s optical phase chaos communications using a time-delayed optoelectronic oscillator with a three-wave interferometer nonlinearity. Chaos 27(11), 114311 (2017)

    Article  Google Scholar 

  38. Lavrov, R., Peil, M., Jacquot, M., Larger, L., Udaltsov, V., Dudley, J.: Electro-optic delay oscillator with nonlocal nonlinearity: optical phase dynamics, chaos, and synchronization. Phys. Rev. E 80(2), 026207 (2009)

    Article  Google Scholar 

  39. Hegger, R., Kantz, H., Schreiber, T.: Practical implementation of nonlinear time series methods: the TISEAN package. Chaos 9(2), 413–435 (1999)

    Article  Google Scholar 

  40. Soriano, M.C., García-Ojalvo, J., Mirasso, C.R., Fischer, I.: Complex photonics: dynamics and applications of delay-coupled semiconductors lasers. Rev. Mod. Phys. 85(1), 421 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the support to the National Nature Science Foundation of China (Nos. 61505061 and 61675083), Fundamental Research Funds for the Central Universities HUST (2017KFYXJJ034) and Key project of R&D Program of Hubei Province (2017AAA046). Y. Fu carried out the simulation work and wrote the manuscript. M. Cheng participated in the design of the scheme. X. Jiang and L. Deng contributed significantly to the analysis and interpretation of data. C. Ke, S. Fu and M. Tang assisted in the simulation work. M. Zhang, P. Shum and D. Liu helped perform the analysis with constructive discussions. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengfan Cheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest concerning the publication of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Y., Cheng, M., Jiang, X. et al. Wavelength division multiplexing secure communication scheme based on an optically coupled phase chaos system and PM-to-IM conversion mechanism. Nonlinear Dyn 94, 1949–1959 (2018). https://doi.org/10.1007/s11071-018-4467-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4467-8

Keywords

Navigation