Dynamics of the spatial restricted three-body problem stabilized by Hamiltonian structure-preserving control


The local invariant (stable, unstable, and center) manifolds of a saddle \(\times \) center \(\times \) center equilibrium point can be used to construct a three-dimensional Hamiltonian structure-preserving (HSP) controller. The linear stability of the controlled Hamiltonian system is verified when one of the proposed criteria is satisfied. The nonlinear dynamics of a linearly stabilized Hamiltonian system is analyzed by normalizing the Hamiltonian high-order perturbation terms using the Lie series method. The analytical solutions of the invariant tori are then obtained in trigonometric series form. A theorem for the Nekhoroshev stability of the controlled Hamiltonian system is provided. When the constructed HSP controller is applied to a photogravitational restricted three-body problem with oblateness, a hyperbolic artificial equilibrium point at which a criterion is satisfied can be stabilized, and bounded Lissajous trajectories near the equilibrium point are obtained. The allocation law demonstrates that the attitude angles and lightness number of the solar sail can serve as control parameters to provide the required acceleration of the HSP controller.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Meyer, K.R., Hall, G.R.: Introduction to Hamiltonian Dynamical Systems and the N-Body Problem. Springer, New York (1991)

    Google Scholar 

  2. 2.

    Farquhar, R. W.: The utilization of halo orbits in advanced lunar operations. NASA TN D-6365 (1971)

  3. 3.

    Farquhar, R.W., Karne, A.A.: Quasi-periodic orbits about the translunar libration point. Celest. Mech. 7, 458–473 (1973)

    Article  Google Scholar 

  4. 4.

    Farquhar, R.W., Muhonen, D.P., Newman, C.R., Hueberger, H.S.: Trajectories and orbital maneuvers for the first libration-point satellite. J. Guid. Control Dyn. 3(6), 549–554 (1980)

    Article  Google Scholar 

  5. 5.

    Richardson, D.L.: Halo orbit formulation for the ISEE-3 mission. J. Guid. Control Dyn. 3(6), 543–548 (1980)

    Article  Google Scholar 

  6. 6.

    Scheeres, D.J., Hsiao, F.Y., Vinh, N.X.: Stablizing motion relation to an unstable orbit: applications to spacecraft formation flight. J. Guid. Control Dyn. 26(1), 62–73 (2003)

    Article  Google Scholar 

  7. 7.

    Xu, M., Xu, S.: Structure-presvering stablization for hamiltonian system and its application in solar sail. J. Guid. Control Dyn. 32(5), 997–1004 (2009)

    Article  Google Scholar 

  8. 8.

    Xu, M., Wei, Y., Liu, Sh: The hamiltonian structure-preserving control and some applications to nonlinear astrodynamics. J. Appl. Math. (2013). https://doi.org/10.1155/2013/107674

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Soldini, S., Colombo, C., Walker, S.J.I.: Adaptive Structure for Spacecraft Orbit Control. In: 64th international astronautical congress, IAC-13-C1.9.10

  10. 10.

    Soldini, S., Colombo, C., Walker, S.J.I.: Solar radiation pressure Hamiltonian feedback control for unstable libration-point orbits. J. Guid. Control Dyn. 40(6), 1374–1389 (2017)

    Article  Google Scholar 

  11. 11.

    Soldini, S., Colombo, C., Walker, S.J.I.: Comparison of Hamiltonian structure-preserving and Floquét mode station-keeping for Libration-point orbits. In: AIAA/AAS astrodynamics specialist conference. p. 4118 (2014)

  12. 12.

    Birkhoff, G.D.: Dynamical Systems. American Mathematical Society, New York (1927)

    Google Scholar 

  13. 13.

    Petrov, A.G.: Modification of the method of invariant normalization of Hamiltonians by parameterizing canonical transformations. Dokl. Phys. 47(10), 742–746 (2002)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Jorba, A.: A methodology for the numerical computation of normal forms, center manifolds and first integrals of Hamiltonian systems. Exp. Math. 8(5), 155–195 (1999)

    Article  Google Scholar 

  15. 15.

    Awrejcewicz, J., Petrov, A.G.: On the normal forms of Hamiltonian systems. Nonlinear Dyn. 48(1), 185–197 (2007)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Awrejcewicz, J., Petrov, A.G.: Nonlinear oscillations of an elastic two-degrees-of-freedom pendulum. Nonlinear Dyn. 53(1–2), 19–30 (2008)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Gómez, G., Jorba, A., Simo, C.: Dynamics and Mission Design Near Liberation Points. Vol. IV. Advanced Methods for Triangular Points. World Science Publishing Co. Pte. Ltd, Singapore (2001)

    Google Scholar 

  18. 18.

    Arnold, V.I.: Proof of a theorem of AN Kolmogorov on the invariance of quasi-periodic motions under small perturbations of the Hamiltonian. Russ. Math. Surv. 18(5), 9–36 (1963)

    Article  Google Scholar 

  19. 19.

    Kolmogorov, A.N.: On the conservation of conditionally periodic motions under small perturbation of the Hamiltonian. Dokl. Akad. Nauk. SSR 98(527), 2–3 (1954)

    Google Scholar 

  20. 20.

    Mozer, Y.: On invariant curves in area-preserving maps of an annulus. Matematika 6(5), 51–67 (1962)

    Google Scholar 

  21. 21.

    Arnold, V.I.: Instability of dynamical systems with several degrees of freedom. Soviet Math. 5, 581–585 (1964)

    Google Scholar 

  22. 22.

    Nekhoroshev, N.N.: An exponential estimate of the time of stability of nearly-integrable Hamiltonian systems. Russ. Math. Surv. 32(6), 1–65 (1977)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Fassò, F., Guzzo, M., Benettin, G.: Nekhoroshev-stability of elliptic equilibria of Hamiltonian systems. Commun. Math. Phys. 197(2), 347–360 (1998)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Benettin, G., Fassò, F., Guzzo, M.: Nekhoroshev-stability of L\(_{4}\) and L\(_{5}\) in the spatial restricted three-body problem. Regul. Chaotic. Dyn. 3(3), 56–72 (1998)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Chernikov, Y.A.: The photogravitational restricted problem of three bodies. Sov. Astron. 14, 176 (1970)

    Google Scholar 

  26. 26.

    Kunitsyn, A.L., Tureshbaev, A.T.: On the collinear libration points in the photogravitational three-body problem. Celest. Mech. 35(2), 105–112 (1985)

    Article  Google Scholar 

  27. 27.

    McInnes, C.R.: Solar Sailing: Technology. Dynamics and Mission Applications. Springer, Berlin (1999). Chap. 5

    Google Scholar 

  28. 28.

    Farrés, A., Jorba, A.: Periodic and quasi-periodic motions of a solar sail close to SL\(_{1 }\)in the Earth-Sun system. Celest. Mech. 107(1), 233–253 (2010)

    Article  Google Scholar 

  29. 29.

    Farrés, A., Jorba, A.: Station keeping of a solar sail around a halo orbit. Acta Astronaut. 94(1), 527–539 (2014)

    Article  Google Scholar 

  30. 30.

    Chidambararaj, P., Sharma, R.K.: Halo orbits around Sun-Earth L1 in photogravitational restricted three-body problem with oblateness of smaller primary. Int. J. Astron. Astrophys. 6(03), 293 (2016)

    Article  Google Scholar 

  31. 31.

    Srivastava, V.K., Kumar, J., Kushvah, B.S.: The effects of oblateness and solar radiation pressure on halo orbits in the photogravitational Sun-Earth system. Acta Astronaut. 129, 389–399 (2016)

    Article  Google Scholar 

  32. 32.

    Pushparaj, N., Sharma, R.K.: Halo orbits at sun-mars L\(_{1}\), L\(_{2}\) in the photogravitational restricted three-body problem with oblateness. Adv. Astrophys. 2(1), 35–51 (2017)

    Google Scholar 

  33. 33.

    Pathak, N., Thomas, V.O.: Analysis of effect of oblateness of smaller primary on the evolution of periodic orbits. Int. J. Astron. Astrophys. 6, 440–463 (2016)

    Article  Google Scholar 

  34. 34.


Download references


This work was supported by the National Natural Science Foundation of China (11432001 and 11172024) and the Fundamental Research Funds for the Central Universities.

Author information



Corresponding author

Correspondence to Ming Xu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Luo, T., Xu, M. Dynamics of the spatial restricted three-body problem stabilized by Hamiltonian structure-preserving control. Nonlinear Dyn 94, 1889–1905 (2018). https://doi.org/10.1007/s11071-018-4463-z

Download citation


  • Hamiltonian structure-preserving control
  • Spatial restricted three-body problem
  • Hyperbolic equilibrium point
  • Linear stability
  • Normal form
  • Nekhoroshev stability