Skip to main content
Log in

Primary resonance analysis and vibration suppression for the harmonically excited nonlinear suspension system using a pair of symmetric viscoelastic buffers

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

To reduce the severity of high-magnitude vibrations and shock, end-stop buffers was used for the most suspension cabs or seats of work vehicles. This paper employs a pair of symmetric linear viscoelastic end-stops to improve the performance of a single-degree-of-freedom nonlinear suspension system under primary resonance conditions, which has cubic nonlinearity. Firstly, a piecewise symmetry tri-nonlinear model is introduced. The frequency response of relative displacement corresponding to the steady-state motion is obtained by applying the multiple-scale method, which is found to be the same with the averaging method solution. And it is further verified by numerical simulation. Its stability is then studied. Subsequently, a design criterion is proposed for jump avoidance, which is caused by the saddle-node bifurcation. Also, parametric studies are carried out to illustrate effects of design parameters for the end-stop on the isolation performance at primary resonance, including responses of the relative displacement and the absolute acceleration. The results show that with dynamic parameters properly designed by using viscoelastic end-stops, the relative displacement response can be effectively suppressed and the jump can be eliminated for both hardening and softening primary isolators. Besides, the end-stop can effectively attenuate the absolute acceleration response for a hardening primary isolator, while more damping is needed to attenuate that for a softening primary isolator, although the degree of the softening nonlinearity is mitigated. It is suggested that a moderate stiffness compared to that of the primary isolator and also a high damping of the end-stop be beneficial to both vibration isolation and jump avoidance under primary resonance conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Wu, X., Griffin, M.J.: The influence of end-stop buffer characteristics on the severity of suspension seat end-stop impacts. J. Sound Vib. 215(4), 989–996 (1998)

    Article  Google Scholar 

  2. Lemerle, P., Boulanger, P., Poirot, R.: A simplified method to design suspended cabs for counterbalance trucks. J. Sound Vib. 253(1), 283–293 (2002)

    Article  Google Scholar 

  3. Rakheja, S., Boileau, P.-É., Wang, Z., et al.: Performance analysis of suspension seats under high magnitude vibration excitations: part I: model development and validation. J. Low Freq. Noise Vib. Act. Control 22(4), 225–252 (2003)

    Article  Google Scholar 

  4. Gunston, T.P., Rebelle, J., Griffin, M.J.: A comparison of two methods of simulating seat suspension dynamic performance. J. Sound Vib. 278(1), 117–134 (2004)

    Article  Google Scholar 

  5. Rebelle, J.: Methodology to improve the performance of the end-stop buffers of suspension seats. Veh. Syst. Dyn. 42(4), 211–233 (2004)

    Article  Google Scholar 

  6. Zhou, C., Sun, B., Chen, N., et al.: Ride comfort simulation and experimental research of nonlinear rubber suspension system. J. Southeast Univ. (Nat. Sci. Ed.) 37(1), 30–34 (2007). (in Chinese with English abstract)

    Google Scholar 

  7. Milburn, R.J., Bakken, M., Virgilio, S., et al.: Cab suspension system for an off-road vehicle. US Patent No. 8,807,633 B2 (2014)

  8. Zhong, S., Chen, Y.: Bifurcation of piecewise-linear nonlinear vibration system of vehicle suspension. Appl. Math. Mech. (Engl. Ed.) 30(6), 677–684 (2009)

    Article  MATH  Google Scholar 

  9. Le, V.Q., Zhang, J., Liu, X., et al.: Nonlinear dynamic analysis of interaction between vehicle and road surfaces for 5-axle heavy truck. J. Southeast Univ. (Engl. Ed.) 27(4), 405–409 (2011)

    Google Scholar 

  10. Ward, C.H.: The application of a new cab mounting to address cab shake on the 2003 Chevrolet Kodiak and GMC Topkick. In: SAE Technical Paper Series 2002-01-3102

  11. Sun, X., Zhang, J.: Performance of earth-moving machinery cab with hydraulic mounts in low frequency. J. Vib. Control 20(5), 724–735 (2014)

    Article  MathSciNet  Google Scholar 

  12. Tuncel, O., Sendur, P., Özkan, M., et al.: Technical note: ride comfort optimization of Ford cargo truck cabin. Int. J. Veh. Des. 52(1), 222–236 (2010)

    Article  Google Scholar 

  13. Naraynan, S., Sekar, P.: Periodic and chaotic responses of an SDF system with piecewise linear stiffness subjected to combined harmonic and flow induced excitations. J. Sound Vib. 184(2), 281–298 (1995)

    Article  MATH  Google Scholar 

  14. Ing, J., Pavlovskaia, E., Wiercigroch, M.: Dynamics of a nearly symmetrical piecewise linear oscillator close to grazing incidence: modelling and experimental verification. Nonlinear Dyn. 46, 225–238 (2006)

    Article  MATH  Google Scholar 

  15. Ing, J., Pavlovskaia, E., Wiercigroch, M., Banerjee, S.: Experimental study of impact oscillator with one-sided elastic constraint. Philos. Trans. R. Soc. A 366, 679–704 (2008)

    Article  MATH  Google Scholar 

  16. Liu, Y., Pavlovskaia, E., Wiercigroch, M.: Experimental verification of the vibro-impact capsule model. Nonlinear Dyn. 83, 1029–1041 (2016)

    Article  Google Scholar 

  17. Wiercigroch, M., Sin, V.W.T.: Experimental study of a symmetrical piecewise base-excited oscillator. ASME J. Appl. Mech. 65, 657–663 (1998)

    Article  Google Scholar 

  18. Narimani, A., Golnaraghi, M.F., Jazar, R.N.: Optimizing piecewise linear isolator for steady state vibration. In: Proceedings of IMECE’03 2003 ASME International Mechanical Engineering Congress, Washington, D.C., Nov. 15–21 (2003)

  19. Narimani, A., Golnaraghi, M.F., Jazar, G.N.: Frequency response of a piecewise linear vibration isolator. J. Vib. Control 10, 1775–1794 (2004)

    Article  MATH  Google Scholar 

  20. Deshpande, S., Mehta, S., Jazar, G.N.: Optimization of secondary suspension of piecewise linear vibration isolation systems. Int. J. Mech. Sci. 48(4), 341–377 (2006)

    Article  MATH  Google Scholar 

  21. Jazar, G.N., Mahinfalah, M., Deshpande, S.: Design of a piecewise linear vibration isolator for jump avoidance. Proc. Inst. Mech. Eng. Part K 221(3), 441–450 (2007)

    Google Scholar 

  22. Wallentowitz, H.: Automotive Engineering II: Vertical and Lateral Dynamics of Vehicles. China Machine Press, Beijing (2009)

    Google Scholar 

  23. Mallik, A.K., Kher, V., Puri, M., Hatwal, H.: On the modeling of non-linear elastomeric vibration isolators. J. Sound Vib. 219(2), 239–253 (1999)

    Article  Google Scholar 

  24. Shaska, K., Ibrahim, R.A., Gibson, R.F.: Influence of excitation amplitude on the characteristics of nonlinear butyl rubber isolators. Nonlinear Dyn. 47, 83–104 (2007)

    Article  MATH  Google Scholar 

  25. Natsiavas, S., Tratskas, P.: On vibration isolation of mechanical systems with non-linear foundations. J. Sound Vib. 194(2), 173–185 (1996)

    Article  Google Scholar 

  26. Stahl, P., Jazar, G.N.: Frequency response analysis of piecewise nonlinear vibration isolator. In: Proceedings of IDETC/CIE 2005, ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Long Beach, CA, USA, Sept. 24–28 (2005)

  27. Stahl, P., Jazar, G.N.: Stability analysis of a piecewise nonlinear vibration isolator. In: Proceedings of IMECE2005, ASME International Mechanical Engineering Congress and Exposition, Orlando, FL, USA, Nov. 5–11 (2005)

  28. Hao, Z., Cao, Q., Wiercigroch, M.: Two-sided damping constraint control strategy for high-performance vibration isolation and end-stop impact protection. Nonlinear Dyn. 86(4), 1–16 (2016)

    Article  MathSciNet  Google Scholar 

  29. Andreaus, U., De Angelis, M.: Nonlinear dynamic response of a base-excited SDOF oscillator with double-side unilateral constraints. Nonlinear Dyn. 84(3), 1447–1467 (2016)

    Article  Google Scholar 

  30. Yan, Y., Liu, Y., Liao, M.: A comparative study of the vibro-impact capsule systems with one-sided and two-sided constraints. Nonlinear Dyn. 89, 1063–1087 (2017)

    Article  Google Scholar 

  31. Liu, Y., Páez, Chávez J.: Controlling multistability in a vibro-impact capsule system. Nonlinear Dyn. 88, 1289–1304 (2017)

    Article  Google Scholar 

  32. Gao, X., Chen, Q.: Nonlinear frequency response analysis and dynamics design of a solid and liquid mixture nonlinear vibration isolator. J. Vib. Control 20(15), 2389–2400 (2013)

    Article  Google Scholar 

  33. Gao, X., Chen, Q.: Nonlinear analysis, design and vibration isolation for a bilinear system with time-delayed cubic velocity feedback. J. Sound Vib. 333(6), 1562–1576 (2014)

    Article  Google Scholar 

  34. Cheng, C., Li, S., Wang, Y., et al.: On the analysis of a high-static-low-dynamic stiffness vibration isolator with time-delayed cubic displacement feedback. J. Sound Vib. 378, 76–91 (2016)

    Article  Google Scholar 

  35. Sun, B., Zhou, C., Zhang, X., et al.: Nonlinear dynamic characteristics of rubber suspension of construction vehicle. J. Southeast Univ. (Nat. Sci. Ed.) 37(6), 974–979 (2007). (in Chinese with English abstract)

    Google Scholar 

  36. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2004)

    MATH  Google Scholar 

  37. Kandil, A., Eissa, M.: Improvement of positive position feedback controller for suppressing compressor blade oscillations. Nonlinear Dyn. 90(3), 1727–1753 (2017)

    Article  Google Scholar 

  38. Li, L., Zhang, Q., Wang, W., et al.: Nonlinear coupled vibration of electrostatically actuated clamped-clamped microbeams under higher-order modes excitation. Nonlinear Dyn. 90(3), 1593–1606 (2017)

    Article  Google Scholar 

  39. Liu, F., Xiang, C., Liu, H., et al.: Nonlinear vibration of permanent magnet synchronous motors in electric vehicles influenced by static angle eccentricity. Nonlinear Dyn. 90(3), 1851–1872 (2017)

    Article  Google Scholar 

  40. Babitsky, V.I., Veprik, A.M.: Universal bumpered vibration isolator for severe environment. J. Sound Vib. 218(2), 269–292 (1998)

    Article  Google Scholar 

  41. Zhang, R., Li, K., Yu, F., et al.: Novel electronic braking system design for EVS based on constrained nonlinear hierarchical control. Int. J. Automot. Technol. 18(4), 707–718 (2017)

    Article  Google Scholar 

  42. Zhang, R.H., Ma, Y.B., You, F., Peng, T., He, Z.C., Li, K.N.: Exploring to direct the reaction pathway for hydrogenation of levulinic acid into gvalerolactone for future clean-energy vehicles over a magnetic Cu–Ni catalyst. Int. J. Hydrog. Energy 42(40), 25185–25194 (2017)

    Article  Google Scholar 

  43. Brennan, M.J., Kovacic, I., Carrella, A., Waters, T.P.: On the jump-up and jump-down frequencies of the duffing oscillator. J. Sound Vib. 318, 1250–1261 (2008)

    Article  Google Scholar 

  44. Zhang, R.H., He, Z.C., Wang, H.W., You, F., Li, K.N.: Study on self-tuning tyre friction control for developing main-servo loop integrated chassis control system. IEEE Access 5, 6649–6660 (2017)

    Article  Google Scholar 

  45. You, F., Zhang, R., Guo, L., et al.: Trajectory planning and tracking control for autonomous lane change maneuver based on the cooperative vehicle infrastructure system. Exp. Syst. Appl. 42(14), 5932–5946 (2015)

    Article  Google Scholar 

  46. Song, H., Zheng, P., Ge, H.: TDGL and mKdV equations for an extended car-following model. Nonlinear Dyn. 90(4), 2253–2262 (2017)

    Article  MathSciNet  Google Scholar 

  47. Zhang, R., Li, K., He, Z., et al.: Advanced emergency braking control based on a nonlinear model predictive algorithm for intelligent vehicles. Appl. Sci. 7(5), 504 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Dr. Scientific Research Foundation of Taiyuan University of Science and Technology (Grant No. 20142035), the Natural Science Foundation Project of Shanxi Province China (Grant No. 201701D121069) and the National Natural Science Foundation of China (Grant Nos. 51775565, 51208500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronghui Zhang.

Ethics declarations

Conflict of interests

The authors declare that there is no conflict of interests regarding the publication of this article.

Appendices

Appendix A

Using the averaging method

$$\begin{aligned} Y= & {} \bar{{A}}(\tau )\cos ({\lambda \tau +{\bar{\gamma }}(\tau )}) \end{aligned}$$
(A1)
$$\begin{aligned} {\dot{Y}}= & {} -\,\bar{{A}}\lambda \sin ({\lambda \tau +{\bar{\gamma }}}) \end{aligned}$$
(A2)

Then, the following equation is implied

$$\begin{aligned} \dot{\bar{{A}}}\cos ({\lambda \tau +{\bar{\gamma }}}) -\bar{{A}}\dot{{\bar{\gamma }}} \sin ({\lambda \tau +{\bar{\gamma }}})=0 \end{aligned}$$
(A3)

And the acceleration is

$$\begin{aligned} {\ddot{Y}}= & {} -\,\dot{\bar{{A}}}\lambda \sin ({\lambda \tau +{\bar{\gamma }}}) -\bar{{A}}\lambda ^{2}\cos ({\lambda \tau +{\bar{\gamma }}}) \nonumber \\&-\,\bar{{A}}\dot{{\bar{\gamma }}} \lambda \cos ({\lambda \tau +{\bar{\gamma }}}) \end{aligned}$$
(A4)

Considering \(\varphi =\lambda \tau +{\bar{\gamma }}\) and defining \(\varphi _0 =\left\{ {\begin{array}{ll} \arccos \frac{d}{\bar{{A}}}\in \left( {0,\frac{\pi }{2}} \right) &{} \bar{{A}}>d \\ 0 &{} \bar{{A}}\le d \\ \end{array}} \right. \), substitute (A1), (A2) and (A4) into Eq. (2)

$$\begin{aligned}&-\,\dot{\bar{{A}}}\lambda \sin \varphi -\bar{{A}}\lambda ({\lambda +\dot{{\bar{\gamma }}}}) \cos \varphi +\bar{{A}}\cos \varphi \nonumber \\&\qquad +\,\mu \bar{{A}}^{3}\cos ^{3}\varphi -2\xi _1 \bar{{A}}\lambda \sin \varphi +G_1 \nonumber \\&\quad =\lambda ^{2}\cos ({\varphi -{\bar{\gamma }}} ) \end{aligned}$$
(A5)

where

$$\begin{aligned} G_1 =\left\{ {\begin{array}{ll} \rho ^{2} ({\bar{{A}}\cos \varphi -d})-2\xi _2 \bar{{A}}\lambda \sin \varphi &{} 0<\varphi<\varphi _0 \quad \hbox {or}\quad 2\pi -\varphi _0<\varphi<2\pi \\ 0 &{} \varphi _0 \le \varphi \le \pi -\varphi _0\quad \hbox {or}\quad \pi +\varphi _0 \le \varphi \le 2\pi -\varphi _0 \\ \rho ^{2} ({\bar{{A}}\cos \varphi +d})-2\xi _2 \bar{{A}}\lambda \sin \varphi &{} \pi -\varphi _0<\varphi <\pi +\varphi _0 \end{array}} \right. \end{aligned}$$

Because only \(\varphi _0 \le \varphi \le \pi -\varphi _0\) or \(\pi +\varphi _0 \le \varphi \le 2\pi -\varphi _0\) can be true when \(\varphi _0 =0\), \(G_{1}\) is true under both conditions of \(A>d\) and \(A\le d\).

Solving Eqs. (A3) and (A5) for \(\dot{\bar{{A}}}\) and \(\dot{{\bar{\gamma }}}\), we have

$$\begin{aligned} \lambda \dot{\bar{{A}}}= & {} -\,\bar{{A}}({\lambda ^{2}-1})\cos \varphi \sin \varphi +\mu \bar{{A}}^{3}\cos ^{3}\varphi \sin \varphi \nonumber \\&-\,2\xi _1 \bar{{A}}\lambda \sin ^{2}\varphi +G_1 \sin \varphi \nonumber \\&-\,\lambda ^{2}\cos ({\varphi -{\bar{\gamma }}})\sin \varphi \end{aligned}$$
(A6)
$$\begin{aligned} \lambda \bar{{A}}\dot{{\bar{\gamma }}}= & {} -\bar{{A}} ({\lambda ^{2}-1}) \cos ^{2}\varphi +\mu \bar{{A}}^{3}\cos ^{4}\varphi \nonumber \\&-\,2\xi _1 \bar{{A}}\lambda \sin \varphi \cos \varphi +G_1 \cos \varphi \nonumber \\&-\,\lambda ^{2}\cos ({\varphi -{\bar{\gamma }}})\cos \varphi \end{aligned}$$
(A7)

Averaging them over the period \(2\pi /\lambda \), we have

$$\begin{aligned} \lambda \dot{\bar{{A}}}= & {} -\,\xi _1 \lambda \bar{{A}}-\frac{1}{\pi } \xi _2 \lambda \bar{{A}} ({2\varphi _0 -\sin 2\varphi _0}) \nonumber \\&-\,\frac{1}{2}\lambda ^{2}\sin {\bar{\gamma }} \end{aligned}$$
(A8)
$$\begin{aligned} \lambda \bar{{A}}\dot{{\bar{\gamma }}}= & {} -\frac{1}{2}\bar{{A}} ({\lambda ^{2}-1})+\frac{3}{8}\mu \bar{{A}}^{3} \nonumber \\&+\,\frac{1}{2\pi } ({2\rho ^{2}\bar{{A}}\varphi _0 -4d\rho ^{2}\sin \varphi _0 +\rho ^{2}\bar{{A}}\sin 2\varphi _0}) \nonumber \\&-\, \frac{1}{2}\lambda ^{2}\cos {\bar{\gamma }} \end{aligned}$$
(A9)

At the steady-state condition, the derivatives \({\dot{A}}\) and \(\dot{{\bar{\gamma }}}\) can be considered to be zero. Then,

$$\begin{aligned} \lambda ^{2}\sin {\bar{\gamma }}= & {} -2\xi _1 \lambda \bar{{A}}-\frac{2}{\pi } \xi _2 \lambda \bar{{A}} ({2\varphi _0 -\sin 2\varphi _0}) \end{aligned}$$
(A10)
$$\begin{aligned} \lambda ^{2}\cos {\bar{\gamma }}= & {} -\bar{{A}}({\lambda ^{2}-1}) +\frac{3}{4}\mu \bar{{A}}^{3} \nonumber \\&+\frac{1}{\pi } \left( 2\rho ^{2}\bar{{A}}\varphi _0 -4d\rho ^{2}\sin \varphi _0 \right. \nonumber \\&\left. \quad +\rho ^{2}\bar{{A}}\sin 2\varphi _0\right) \end{aligned}$$
(A11)

Therefore,

$$\begin{aligned}&\left[ -\bar{{A}}({\lambda ^{2}-1})+\frac{3}{4}\mu \bar{{A}}^{3} \right. \nonumber \\&\quad \left. +\frac{\rho ^{2}}{\pi } ({2\bar{{A}}\varphi _0 -4d\sin \varphi _0 +\bar{{A}}\sin 2\varphi _0})\right] ^{2} \nonumber \\&\quad +\bar{{A}}^{2}\lambda ^{2}\left[ {2\xi _1 +\frac{2}{\pi } \xi _2 ({2\varphi _0 -\sin 2\varphi _0})} \right] ^{2}=\lambda ^{4}\nonumber \\ \end{aligned}$$
(A12)

Appendix B

$$\begin{aligned} R_1^{\prime } (A)= & {} \frac{2a_2 \rho ^{2}}{A} \end{aligned}$$
(B1)
$$\begin{aligned} R_2^{\prime } (A)= & {} \frac{4a_2 \xi _2}{A} \end{aligned}$$
(B2)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Zhang, H., Meng, W. et al. Primary resonance analysis and vibration suppression for the harmonically excited nonlinear suspension system using a pair of symmetric viscoelastic buffers. Nonlinear Dyn 94, 1243–1265 (2018). https://doi.org/10.1007/s11071-018-4421-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4421-9

Keywords

Navigation