Advertisement

Nonlinear Dynamics

, Volume 94, Issue 2, pp 1117–1126 | Cite as

Security analysis and improvement of the pseudo-random number generator based on quantum chaotic map

  • Dragan Lambić
Original Paper

Abstract

In this paper, a security analysis of the pseudo-random number generator based on quantum chaotic map is made, which reveals the existence of serious security problems. Security analysis revealed that more than 99% of the key space is composed of weak keys. Also, normalization of initial condition and relations between control parameters and initial conditions significantly reduce security of the analyzed pseudo-random number generator (PRNG). Observation of only three iterates of the analyzed PRNG allows significant reduction in required complexity of the brute-force attack. All attacks based on weak keys have complexity which is less than \(2^{128}\). For these reasons, analyzed PRNG cannot be considered safe for the use in cryptographic systems. In order to eliminate perceived security problems, improved version of the analyzed PRNG is proposed.

Keywords

Chaos Pseudo-random number generator Cryptanalysis Cryptography 

References

  1. 1.
    Lambic, D.: Security analysis and improvement of a block cipher with dynamic S-boxes based on tent map. Nonlinear Dyn. 79, 2531–2539 (2015)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Murillo-Escobar, M.A., Cruz-Hernandez, C., Cardoza-Avendano, L., Mendez-Ramirez, R.: A novel pseudorandom number generator based on pseudorandomly enhanced logistic map. Nonlinear Dyn. 87, 407–425 (2017)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Valtierra, J.L., Tlelo-Cuautle, E., Rodríguez-Vázquez, Á.: A switched-capacitor skew-tent map implementation for random number generation. Int. J. Circuit Theory Appl. 45(2), 305–315 (2017)CrossRefGoogle Scholar
  4. 4.
    Mobayen, S., Volos, C.K., Kacar, S., Cavusoglu, U.: New class of chaotic systems with equilibrium points like a three-leaved clover. Nonlinear Dyn. 91, 939–956 (2018)CrossRefGoogle Scholar
  5. 5.
    Janakiraman, S., Thenmozhi, K., Rayappan, J.B.B., Amirtharajan, R.: Lightweight chaotic image encryption algorithm for real-time embedded system: implementation and analysis on 32-bit microcontroller. Microprocess. Microsyst. 56, 1–12 (2018)CrossRefGoogle Scholar
  6. 6.
    De la Hoz, M.Z., Acho, L., Vidal, Y.: An experimental realization of a chaos-based secure communication using Arduino microcontrollers. Sci. World J. Article ID 123080, 1–10 (2015)Google Scholar
  7. 7.
    Acho, L.: A discrete-time chaotic oscillator based on the logistic map: a secure communication scheme and a simple experiment using Arduino. J. Frankl. Inst. 352(8), 3113–3121 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Giakoumis, A.E., Volos, C.K., Stouboulos, I.N., Kyprianidis, I.K., Pham V.T.: A chaotic system with equilibria located on an open curve and its microcontroller implementation. In: Modern Circuits and Systems Technologies (MOCAST). IEEE (2017)Google Scholar
  9. 9.
    de la Fraga, L.G., Torres-Pérez, E., Tlelo-Cuautle, E., Mancillas-López, C.: Hardware implementation of pseudo-random number generators based on chaotic maps. Nonlinear Dyn. 90(3), 1661–1670 (2017)CrossRefGoogle Scholar
  10. 10.
    Karakaya, B., Celik, V., Gulten, A.: Chaotic cellular neural network-based true random number generator. Int. J. Circuit Theory Appl. 45(11), 1885–1897 (2017)CrossRefGoogle Scholar
  11. 11.
    Lambić, D., Nikolić, M.: Pseudo-random number generator based on discrete-space chaotic map. Nonlinear Dyn. 90, 223–232 (2018)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Alvarez, G., Amigo, J.M., Arroyo, D., Li, S.: Lessons learnt from the cryptanalysis of chaos-based ciphers. In: Kocarev, L., Lian, S. (eds.) Chaos-Based Cryptography: Theory, Algorithms and Applications, pp. 257–295. Springer, Berlin (2011)CrossRefzbMATHGoogle Scholar
  13. 13.
    Ozkaynak, F.: Brief review on application of nonlinear dynamics in image encryption. Nonlinear Dyn. (2018).  https://doi.org/10.1007/s11071-018-4056-x CrossRefGoogle Scholar
  14. 14.
    Akhshani, A., Akhavan, A., Mobaraki, A., Lim, S.-C., Hassan, Z.: Pseudo random number generator based on quantum chaotic map. Commun. Nonlinear Sci. Numer. Simul. 19, 101–111 (2014)CrossRefzbMATHGoogle Scholar
  15. 15.
    Wang, X., Zhang, W., Guo, W., Zhang, J.: Secure chaotic system with application to chaotic ciphers. Inf. Sci. 221, 555–570 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Schneier, B.: Applied Cryptography. Wiley, New York (1996)zbMATHGoogle Scholar
  17. 17.
    Ecrypt II yearly report on algorithms and keysizes (2010). http://www.ecrypt.eu.org/documents/D.SPA.13.pdf. Accessed 3 Feb 2016
  18. 18.
    Goggin, M.E., Sundaram, B., Milonni, P.W.: Quantum logistic map. Phys. Rev. A 41, 5705–5708 (1990)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Microprocessor Standards Committee: IEEE Standard for Floating-Point Arithmetic. IEEE Std. 754–2008, pp. 1–58 (2008)Google Scholar
  20. 20.
    Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans. Model. Comput. Simul. 8(1), 3–30 (1998)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department for Management of Science and Technology DevelopmentTon Duc Thang UniversityHo Chi Minh CityVietnam
  2. 2.Faculty of Mathematics and StatisticsTon Duc Thang UniversityHo Chi Minh CityVietnam

Personalised recommendations