Numerical study of flow-induced vibrations of cylinders under the action of nonlinear energy sinks (NESs)

Abstract

An isolated two-dimensional circular cylinder with two linear degrees of freedom, parallel and perpendicular to the free-stream direction, and owning a nonlinear energy sink (NES) is investigated by fluid–structure interaction (FSI) simulations to assess vortex-induced vibrations (VIV) at moderate Reynolds numbers. Subsequently, the wake-induced vibration (WIV) of a pair of identical cylinders under the action of two NES in a tandem arrangement and in a proximity–wake interference regime is explored using the same approach. The NES parameters (mass, nonlinear stiffness and damping) are investigated to determine their effects on the dynamic response of a single degree of freedom (in transverse flow direction) coupled system by a reduced-order model based on an experimentally validated van der Pol oscillator. The CFD model coupled with FSI method is also validated against VIV experimental data for an isolated cylinder in a uniform flow. The study is aimed to investigate the effect of the passive suppression NES device on VIV and WIV. The amplitude response, trajectories of cylinder motion and temporal evolutions of vortex shedding are obtained by conducting a series of numerical simulations. It is found that placing a tuned NES in the cylinders can provide good suppression effect; however, the effectiveness is function of the reduced velocity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

References

  1. 1.

    Assi, G.R.S.: Mechanisms for Flow-Induced Vibration of Interfering Bluff Bodies. Imperial College London, London (2009)

    Google Scholar 

  2. 2.

    Bearman, P.W.: Circular cylinder wakes and vortex-induced vibrations. J. Fluids Struct. 27(5), 648–658 (2011)

    Article  Google Scholar 

  3. 3.

    Williamson, C.H.K., Govardhan, R.: Vortex-induced vibrations. Annu. Rev. Fluid Mech. 36, 413–455 (2004)

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Khalak, A., Williamson, C.H.K.: Dynamics of a hydroelastic cylinder with very low mass and damping. J. Fluids Struct. 10(5), 455–472 (1996). https://doi.org/10.1006/jfls.1996.0031

    Article  Google Scholar 

  5. 5.

    Wang, E.H., Xiao, Q., Zhu, Q., et al.: The effect of spacing on the vortex-induced vibrations of two tandem flexible cylinders. Phys. Fluids 29, 077103 (2017)

    Article  Google Scholar 

  6. 6.

    Chen, D.Y., Abbas, L.K., Rui, X.T., et al.: Dynamic modeling of sail mounted hydroplanes system- Part II: hydroelastic behavior and the impact of structural parameters and free-play on flutter. Ocean Eng. 131, 322–337 (2017)

    Article  Google Scholar 

  7. 7.

    Borazjani, I., Sotiropoulos, F.: Vortex-induced vibrations of two cylinders in tandem arrangement in the proximity-wake interference region. J. Fluid Mech. 621, 321–364 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Huera-Huarte, F.J., Bangash, Z.A., González, L.M.: Multi-mode vortex and wake-induced vibrations of a flexible cylinder in tandem arrangement. J. Fluids Struct. 66, 571–588 (2016)

    Article  Google Scholar 

  9. 9.

    Mysa, R.C., Kaboudian, A., Jaiman, R.K.: On the origin of wake-induced vibration in two tandem circular cylinders at low Reynolds number. J. Fluids Struct. 61, 76–98 (2016)

    Article  Google Scholar 

  10. 10.

    Teixeira, P.R.F., Didier, E.: Numerical simulation of flow interaction between stationary and downstream elastically mounted cylinders in tandem at low Reynolds numbers. J. Braz. Soc. Mech. Sci. Eng. 39(3), 801–811 (2017)

    Article  Google Scholar 

  11. 11.

    How, B.V.E., Ge, S.S., Choo, Y.S.: Active control of flexible marine risers. J. Sound Vib. 320(4), 758–776 (2009)

    Article  Google Scholar 

  12. 12.

    Wang, C., Tang, H., Yu, S.C.M., et al.: Active control of vortex-induced vibrations of a circular cylinder using windward-suction-leeward-blowing actuation. Phys. Fluids 28(5), 053601 (2016)

    Article  Google Scholar 

  13. 13.

    Muddada, S., Patnaik, B.S.V.: Active flow control of vortex induced vibrations of a circular cylinder subjected to non-harmonic forcing. Ocean Eng. 142, 62–77 (2017)

    Article  Google Scholar 

  14. 14.

    Kang, L., Ge, F., Wu, X., et al.: Effects of tension on vortex-induced vibration (VIV) responses of a long tensioned cylinder in uniform flows. Acta Mech. Sin. 33(1), 1–9 (2017)

    Article  Google Scholar 

  15. 15.

    Dalton, C., Xu, Y., Owen, J.C.: The suppression of lift on a circular cylinder due to vortex shedding at moderate Reynolds numbers. J. Fluids Struct. 15(3–4), 617–628 (2001)

    Article  Google Scholar 

  16. 16.

    Zhu, H., Yao, J., Ma, Y., et al.: Simultaneous CFD evaluation of VIV suppression using smaller control cylinders. J. Fluids Struct. 57, 66–80 (2015)

    Article  Google Scholar 

  17. 17.

    Song, Z., Duan, M., Gu, J.: Numerical investigation on the suppression of VIV for a circular cylinder by three small control rods. Appl. Ocean Res. 64, 169–183 (2017)

    Article  Google Scholar 

  18. 18.

    Hamed, A.M., Vega, J., Liu, B., et al.: Flow around a semicircular cylinder with passive flow control mechanisms. Exp. Fluids 58(3), 22 (2017)

    Article  Google Scholar 

  19. 19.

    Nikoo, H.M., Bi, K., Hao, H.: Passive vibration control of cylindrical offshore components using pipe-in-pipe (PIP) concept: an analytical study. Ocean Eng. 142, 39–50 (2017)

    Article  Google Scholar 

  20. 20.

    Holland, V., Tezdogan, T., Oguz, E.: Full-scale CFD investigations of helical strakes as a means of reducing the vortex induced forces on a semi-submersible. Ocean Eng. 137, 338–351 (2017)

    Article  Google Scholar 

  21. 21.

    Zheng, H., Wang, J.: Numerical study of galloping oscillation of a two-dimensional circular cylinder attached with fixed fairing device. Ocean Eng. 130, 274–283 (2017)

    Article  Google Scholar 

  22. 22.

    Cicolin, M.M., Assi, G.R.S.: Experiments with flexible shrouds to reduce the vortex-induced vibration of a cylinder with low mass and damping. Appl. Ocean Res. 65, 290–301 (2017)

    Article  Google Scholar 

  23. 23.

    Yang, K., Zhang, Y.W., Ding, H., et al.: Nonlinear energy sink for whole-spacecraft vibration reduction. J. Vib. Acoust. 139(2), 021011 (2017)

    Article  Google Scholar 

  24. 24.

    Bichiou, Y., Hajj, M.R., Nayfeh, A.H.: Effectiveness of a nonlinear energy sink in the control of an aeroelastic system. Nonlinear Dyn. 86(4), 2161–2177 (2016)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Benarous, N., Gendelman, O.V.: Nonlinear energy sink with combined nonlinearities: enhanced mitigation of vibrations and amplitude locking phenomenon. Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 230(1), 21–33 (2016)

    Article  Google Scholar 

  26. 26.

    Haris, A., Motato, E., Mohammadpour, M., et al.: On the effect of multiple parallel nonlinear absorbers in palliation of torsional response of automotive drivetrain. Int. J. Non-Linear Mech. 96, 22–35 (2017)

    Article  Google Scholar 

  27. 27.

    Luo, J., Wierschem, N.E., Fahnestock, L.A., et al.: Realization of a strongly nonlinear vibration-mitigation device using elastomeric bumpers. J. Eng. Mech. 140(5), 04014009 (2013)

    Article  Google Scholar 

  28. 28.

    Zhang, Y.W., Zhang, H., Hou, S., et al.: Vibration suppression of composite laminated plate with nonlinear energy sink. Acta Astronaut. 123, 109–115 (2016)

    Article  Google Scholar 

  29. 29.

    Tumkur, RKR., Calderer, R., Masud, A., et al.: Passive suppression of laminar vortex induced vibration of a circular cylinder. ENOC 2011: 24–29, July 2011, Rome, Italy

  30. 30.

    Tumkur, R.K.R., Domany, E., Gendelman, O.V., et al.: Reduced-order model for laminar vortex-induced vibration of a rigid circular cylinder with an internal nonlinear absorber. Commun. Nonlinear Sci. Num. Simul. 18(7), 1916–1930 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  31. 31.

    Tumkur, R.K.R., Calderer, R., Masud, A., et al.: Computational study of vortex-induced vibration of a sprung rigid circular cylinder with a strongly nonlinear internal attachment. J. Fluids Struct. 40, 214–232 (2013)

    Article  Google Scholar 

  32. 32.

    Mehmood, A., Nayfeh, A.H., Hajj, M.R.: Effects of a non-linear energy sink (NES) on vortex-induced vibrations of a circular cylinder. Nonlinear Dyn. 77(3), 667–680 (2014)

    Article  Google Scholar 

  33. 33.

    Dai, H.L., Abdelkefi, A., Wang, L.: Vortex-induced vibrations mitigation through a nonlinear energy sink. Commun. Nonlinear Sci. Num. Simul. 42, 22–36 (2017)

    Article  Google Scholar 

  34. 34.

    Stappenbelt, B., Lalji, F., Tan, G.: Low mass ratio vortex-induced motion. In: 16th Australasian Fluid Mechanics Conference, 2007, pp. 1491–1497, December 2007, Crown Plaza. Gold Coast, Australia (2007)

  35. 35.

    Govardhan, R., Williamson, C.H.K.: Modes of vortex formation and frequency response of a freely vibrating cylinder. J. Fluids Mech. 420, 85–130 (2000)

    MathSciNet  Article  MATH  Google Scholar 

  36. 36.

    Facchinetti, M.L., De Langre, E., Biolley, F.: Coupling of structure and wake oscillators in vortex-induced vibrations. J. Fluids Struct. 19(2), 123–140 (2004)

    Article  Google Scholar 

  37. 37.

    Fluent: ANSYS Fluent 17.0 (Theory Guide). ANSYS Inc (2016). http://WWW.Fluent.com

  38. 38.

    Menter, F.R.: Two-equation Eddy-viscosity turbulence models for engineering applications. AIAA J 32(8), 1598–1605 (1994)

    Article  Google Scholar 

  39. 39.

    Rahmanian, M., Zhao, M., Cheng, L., et al.: Two-degree-of-freedom vortex-induced vibration of two mechanically coupled cylinders of different diameters in steady current. J. Fluids Struct. 35, 133–159 (2012)

    Article  Google Scholar 

  40. 40.

    Gharali, K., Johnson, D.A.: Dynamic stall simulation of a pitching airfoil under unsteady freestream velocity. J. Fluids Struct. 42, 228–244 (2013)

    Article  Google Scholar 

  41. 41.

    Ascher, U.M., Petzold, L.R.: Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations. Society for Industrial and Applied Mathematics, Philadelphia (1998)

    Google Scholar 

  42. 42.

    Atkinson, K.E.: An Introduction to Numerical Analysis. Wiley, New York (2008)

    Google Scholar 

  43. 43.

    Bao, Y., Huang, C., Zhou, D., et al.: Two-degree-of-freedom flow-induced vibrations on isolated and tandem cylinders with varying natural frequency ratios. J. Fluids Struct. 35, 50–75 (2012)

    Article  Google Scholar 

  44. 44.

    Bao, Y., Zhou, D., Tu, J.: Flow interference between a stationary cylinder and an elastically mounted cylinder arranged in proximity. J. Fluids Struct. 27(8), 1425–1446 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This research work was carried out during a visiting scholarship study of the first author at RMIT University. The first author gratefully thanks the financial support by Nanjing University of Science and Technology. Also, special thanks are owing to the Editor-In-Chief, the Associate Editor and the anonymous reviewers for their constructive comments which improved the quality of this paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Laith K. Abbas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix

Appendix

The UDF codes of VIV of 2-DOF cylinder under action with NES are shown as follows:

figurea

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dongyang, C., Abbas, L.K., Guoping, W. et al. Numerical study of flow-induced vibrations of cylinders under the action of nonlinear energy sinks (NESs). Nonlinear Dyn 94, 925–957 (2018). https://doi.org/10.1007/s11071-018-4402-z

Download citation

Keywords

  • Nonlinear energy sink
  • Fluid–structure interaction
  • Van der Pol oscillator
  • Vortex-induced vibrations
  • Wake-induced vibrations
  • Passive suppression device